
From Design to Launch  

Ivan Neulander (ineula@google.com)
Daydream Team

Google, Los Angeles

What is AR Stickers?
• AR Stickers is a camera mode for Pixel & Pixel 2 phones. 

• Place animated 3D stickers into the camera feed and they react to
one another and to you. 

• Stickers are lit and rendered to blend seamlessly into the scene. 

Agenda
1. Development Process  

2. AR Stickers Design  

3. Lighting & Rendering 

4. Visual Enhancements 

5. Concluding Thoughts

Our Team
Many groups at Google collaborated to launch AR Stickers:

• Product Management (PM)
• Business Development
• Publishing Producers
• User Experience Designer
• User Experience Researcher
• Visual Artists (VA)
• Software Engineers (Eng)
• Test Engineer
• Q/A Tester

} (UX)

} (Q/A)

Our Team
Several external studios authored the final content:

• Meshes
• Textures
• Skeletal Animations
• Sounds

Team Photos
Mountain View

Team Photos
Los Angeles

Design Mockups
UX provided mockups to guide initial design.

• Defined basic layout and behaviors.
• Completed in advance of implementation 

by engineers.

Design Mockups
UX refined the interface as new features were added.
• Iterated with Eng to arrive at the final look.
• Some ideas came later, e.g:

• Tutorial animation.
• Ground dots.
• Out-of-bounds reticle.

Prototype
Why build a prototype?
• Validate design & justify further development early on.
• ARCore and 2017 Pixel weren’t yet available:

• Emulated on Tango phones with Unity plugin. 

 is the precursor to ARCore (uses special depth sensors).

Prototype

Built in Unity
• Lots of built-in functionality => fast prototyping.
• Many platforms, including Android.
• C# scripting + native plugins.
• Flexible animation system.
• Physically-Based Rendering shaders.

Prototype
Got the basics working.

• Placement, deletion, translation.
• Icons, reticles, gestures.
• Lighting.
• Video recording. 

Used Tango to emulate ARCore.
• Ran on existing Tango phones.
• Manual camera tracking.

• User follows feature point with phone.

Prototype
Basic interactive animations.

• User-to-sticker proximity.
• Sticker-to-sticker proximity.

Graveyard Battle

Prototype
Illumination effect.
• Stickers can light the real world.
• Uses ground plane color scaling + halo effect.
• Would have benefited from more tracked 

geometry (e.g. horizontal + vertical planes).

Final Product

Final Product
Total rewrite of the Unity prototype.

• Event loop, UI, screen recording in Android / Java.
• Animation, rendering, sound in Lullaby.
• AR tracking in ARCore.

Tight Schedule
• From prototype to public demo in < 4 months.
• Launched in December 2017

Final Product
Sticker assets formatted by our build pipeline.

• E.g. ASTC/KTX textures.
• Vastly reduced load time vs.  

WebP compression.

Quick Demo

Agenda
1. Development Process  

2. AR Stickers Design  

3. Lighting & Rendering 

4. Visual Enhancements 

5. Concluding Thoughts

Lullaby
AR Stickers needed:

• Smaller APK.
• Faster startup.
• More customizability.  

Lullaby is an open-source multi-platform engine for VR + AR.
• https://github.com/google/lullaby

https://github.com/google/lullaby

Lullaby
Why we chose Lullaby:

• Specifically designed for mixed reality.
• Originated at Google:

• Easy access to latest source code + dev team.
• Good integration with our standard build system and dev tools.

• Extensible codebase (lightweight C++ libraries).

ARCore
ARCore is Google’s Open-Source Augmented Reality 
SDK for: Android, Unity, Unreal, the Web.  

• Provides per-frame estimation of
• Camera pose (position + rotation).
• Visible planar surfaces (includes boundaries).
• Scene lighting.

• Allows object to be anchored to feature point
• Its tracking improves over time.

• Includes a C and a Java API.

https://developers.google.com/ar/

https://developers.google.com/ar/

ARCore
No specialized hardware, just camera + IMU.

• Flagship phones by Google, Samsung, LG supported. 

Runs continuously during video capture in AR clients.
• Analyzes downsampled video feed.
• Delivers results quickly, refines them over time.
• Modest CPU / battery usage. 

Camera calibration helps with accuracy.
• Pixel 2: individual calibration.
• Pixel: batch calibration.

ARCore: Newer APIs
ARCore added newer APIs that we included after 
AR Stickers 1.0 launch:

Feature Point Clouds
• AR Stickers uses these for a quick initial estimate of ground

plane, based on median of y-values, limited to some range.
• Work quite well with a single ground plane.

ARCore: Newer APIs
ARCore added newer APIs that we included after 
AR Stickers 1.0 launch:
 
Resumable Sessions

• Restores existing stickers + tracking after leaving app.
• Important when recording, sharing, returning to app.
• Assumes that phone doesn’t move much while ARCore is

dormant.

User Interface
Mobile AR is fraught with optical illusions.

• 3D objects in a 2D view can be ambiguous.
• Our goal was to:

• break optical illusions
• ground characters
• create visual references so users can intuit  

where their objects are placed in the world.

User Interface
One Example:
• With the UI reticle, we immediately see that Pizza is not on the

table, but is floating above it. 
 

Agenda
1. Development Process  

2. AR Stickers Design  

3. Lighting & Rendering 

4. Visual Enhancements 

5. Concluding Thoughts

Desktop Viewer
• Same engine as the app.

• Runs on Linux, Mac, Windows.
• Consistent rendering, animations, sounds.

• Faster test iterations than on Android.
• VAs & studios can validate content.

• Useful for engineers too.

Desktop Viewer: Features
• Switching environments.
• Pausing animations.
• Ruler.
• Altering the shader’s

• Albedo.
• Smoothess.
• Metalness.
• Emissiveness.

Desktop Viewer:  
Simulated Camera Feed

ARCore tracking embedded in a JPEG.
• Metadata stored as EXIF.
• Simulates on-device capture.
• Makes viewer behave more like our app

(some UI differences).
• Currently only in viewer, but could be

useful as in-app experience.

Image-Based Lighting
• Prototype used traditional directional lights.

• Objects appeared harshly lit.
• Abrupt transition between light and shadow. 

• Motivated transition to IBL.

Image-Based Lighting
Q: What do we mean by Image-Based Lighting?
A: We use a cube map to illuminate our CG elements.
• Compactly represents a complex lighting environment.
• Techniques for efficient rendering.
• We can alter lighting by changing cube map.

Image-Based Lighting
How do we use IBL in AR Stickers? Two basic components:

1. Precomputed diffuse + specular reflection from an existing
HDRI panoramic image.  
 
 

2. “Fake” Image-Based Lighting uses camera feed.

IBL: Precomputed Lighting
Miller & Hoffman [1984]

• Lighting baked to texture.
• Very inexpensive at runtime.
• But: Ignores occlusion.

IBL: Precomputed Lighting
Precomputing Reflections from HDRI Panorama
• Separate preconvolved textures for diffuse + specular.
• Both are based on a weighted average of all incident light. from env

sphere onto given point on a lit sphere.
• Weighting term allows variable falloff:
• Diffuse: indexed by surface normal, n = 1.
• Specular: indexed by reflection vector.

• n value comes from shader smoothness.
• We handle varying n using 

texture blur (mip LOD bias).

∑
Ω

Ci (⃗ωi . ⃗N)n

cosn θ

IBL: Precomputed Lighting

IBL: Precomputed Lighting

IBL: Precomputed Lighting

IBL: Precomputed Lighting

IBL: Precomputed Lighting

IBL: Precomputed Lighting

IBL: Precomputed Lighting
Precomputing Reflections from HDRI Panorama
• Looks pretty.
• Provides visual detail and interest.
But
• Ignores phone camera, so lighting doesn’t match reality.
• Does not account for occlusion.

IBL: fake Image-Based Lighting
• Incorporates images from phone’s camera feed

into the lighting.
• Lacks detail, since phone’s camera only sees a

tiny part of environment.
• Is an inexpensive estimate of actual

environment lighting (but usually plausible).
• Complements the precomputed HDRI

reflections.

IBL: fake Image-Based Lighting
• Uses blurry, downsampled copy of camera feed.
• Samples region around bottom of sticker, separated into light from

above and below:  
 

• Below: Filtered color of camera view near sticker bottom (i.e.
floor) is generally accurate.

• Above: Also based on floor near sticker, but broader filter area and
more desaturated. Affected by floor color.

• Drives procedural environment map with above/below colors.
• Scaled with precomputed lighting lookups.

IBL: fake Image-Based Lighting
• Lots of calibration against 18% gray reference card.

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL off

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL on

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL off

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL on

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL off

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL on

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL off

IBL: fake Image-Based Lighting

fIBL off fIBL on fIBL on

IBL: fake Image-Based Lighting
• fIBL existed in prototype, but ran slowly

• Updated only while dragging.
• Final app moved execution to GPU

• Responds dynamically for all stickers at all frames.

Camera-Based Specular  
Reflections

Goal: Incorporate camera feed detail into specular reflections.
• Enhances glossy surfaces.
• We already have camera feed texture.

Problem: Phone camera has
• Limited dynamic range.
• Very narrow field of view.

• Unknown incident light for  
most reflections.

Camera-Based Specular  
Reflections

Solution: Incorporate camera feed only where plausible.
• At grazing angles, where incident rays are in camera view. 

Hence:
• Use synthetic cube map as default.
• Blend in Screen-Space Reflections at  

grazing angles w/ sharp falloff.
• Accounts for the blue/red color along 

sphere silhouette .

Camera-Based Specular  
Reflections

Our approach:
• Blend cube map to camera feed using

• Schlick’s approximation to Fresnel reflectance:
• Adjust camera feed brightness to 

match synthetic Environment Map.
• Avoid reflections glowing brighter 

than camera pixels (tone mapping)
• Blur camera feed based on BRDF

• No prefiltering of camera feed,  
so mipmap levels differ.

View Vector

Reflection
Vector

Camera Feed Component Cc

Environment Map Component Ce

Camera

CG
Object

ᶚ
Surface
Normal

ᶰ

p

(1 − cos θ)5

Camera-Based Specular  
Reflections

Critical in AR because they
• ground stickers to the real floor (avoids “floating”).
• provide a powerful hint as to sticker height.
• disambiguate between altitude and depth.

Shadows

Shadows
Critical in AR because they

• ground stickers to the real floor (avoids “floating”).
• provide a powerful hint as to sticker height.
• disambiguate between altitude and depth.

Shadows:  
Blobby Shadows

Procedural shader on ground plane, driven by skeletal joints.
• Soft base shadow (round with radial falloff).
• More detailed contact shadows (at close proximity).
• Combined.

• Captures relatively uniform lighting, e.g. overcast day.

Shadows:  
Blobby Shadows

• Specific skeletal joints are designated as shadow casters.
• Base shadow: Tight-fitting ellipse containing joints.
• Contact shadow: Each joint directly darkens small region.

• Based on distance from ground plane.

Shadows:  
Blobby Base + Contact

Base Contact Combined

Shadows:  
Shadow Maps

Traditional Shadow Maps use two passes:
1. Render scene depth from light’s POV into shadow map.
2. Reproject shading point into shadow map and compare stored

depth to actual.

Shadows:  
Exponential Shadow Maps

We implemented Exponential Shadow Maps (ESM) [Annen et al 2008]
with an overhead light for shadow placement.  

Basic idea:
• Render exponentiated depth into shadow map.
• Exponential curve approximates depth test.

• Just a step function.
• Allows direct filtering of shadow map.

Shadows:  
Exponential Shadow Maps

ESM Advantages:
• Texture filtering of shadow map.
• Shadows can be directly blurred 

in an extra shader pass.
• Renderer can use mipmapping 

to antialias shadows.
• Less expensive / noisy than PCF. 

One disadvantage:
• Light leakage (but never on ground).

Shadows:  
ESM + Blobby Shadows

ESM Blobby Combined

Shadows: LOD Transition
• ESM transitions to blobby base shadows far away.
• Keeps casters tightly framed in single shadow map.

Shadows: Receiver Geometry
Shadow Receiver Cards are needed for AR.
• Transparent cards, created under each sticker at AR plane height.
• Opacity varies with shadow strength.
• They follow stickers in (x, z) but not height.
• Merged when they overlap in (x,z)  

and are within some threshold 
of height (y).

Agenda
1. Development Process  

2. AR Stickers Design  

3. Lighting & Rendering 

4. Visual Enhancements 

5. Concluding Thoughts

Electronic Image Stabilization
AR Stickers includes EIS on all Pixel phones.

• Stabilizes movement and corrects rolling shutter.
• Warps each frame, reducing effective resolution. 

EIS with AR requires:
1. Stabilizing the camera feed.
2. Stabilizing the CG content  

(stickers, shadows, effects).

Electronic Image Stabilization
To stabilize the rendered geometry:

• Pass per-frame homography matrices into vertex shaders.
• Modify 3D position to incorporate them:

• Project to NDC space.
• Apply homography.
• Unproject back to 3D (leaving depth unchanged).

Dynamic Snow Effect
Winter Sports pack adds a falling snow effect.

• Different snowflakes chosen randomly from texture atlas.
• Snowflake speed varies inversely with its size.

• Applied with alpha transparency onto quads.

Snow Effect
• Wind effect matches skier motion.
• Simulated moguls part of model animation.

Agenda
1. Development Process  

2. AR Stickers Design  

3. Lighting & Rendering 

4. Visual Enhancements 

5. Concluding Thoughts

Concluding Thoughts
AR Stickers has been well received!
• androidcentral, cnet, engadget, techcrunch, the verge
• Millions of stickers placed by our users.
• Millions of photos & videos captured. 

• Play Store ratings
• AR Stickers: 4.4 stars
• Blocks Pack: 4.9 stars
• Foodmoji Pack: 5.0 stars
• Text Pack: 5.0 stars
• Winter Sports Pack: 4.5 stars

https://www.androidcentral.com/ar-stickers-are-most-fun-you-can-have-camera
https://www.cnet.com/how-to/what-you-need-to-know-about-googles-ar-stickers/
https://www.engadget.com/2017/12/11/google-pixel-ar-stickers-available-today/
https://techcrunch.com/2017/10/04/trying-out-googles-stranger-things-ar-stickers-on-the-new-pixel-2/
https://www.theverge.com/2018/4/12/17228888/google-ar-stickers-foodmoji-text-play-store

Concluding Thoughts

Concluding Thoughts

Concluding Thoughts

Thank You!

