Dynamic Painterly Droplets

Ivan Neulander
Google Inc.

We present a straightforward painterly rendering algorithm that
composites lightweight models of paint droplets onto a virtual canvas,
producing visually pleasing still images and animations. Our method
adapts the size, shape, density, and placement of these droplets to the
content of a single input image, typically a photograph. The droplets
can be rendered dynamically over multiple frames to produce tem-
porally coherent, loopable animations. Our implementation is GPU-
accelerated and runs on both desktop and mobile platforms.

.

Figure 1: A hotograph and its rendering usihg our painterly droplets.
Paint Droplet Model

The basis of our painterly rendering algorithm is the model of a paint
droplet, which is derived from an arbitrarily sized and oriented el-
lipse, with radially varying color and opacity. Unlike a true ellipse,
a droplet’s perimeter is randomized to produce a consistent but noisy
outline. This shape variation is implemented in the shader. A droplet’s
orientation and thickness are governed by the gradient vectors of the
input image, and its color is based on the color of the input image over
the corresponding region. We implement a low-discrepancy random
number generator (RNG) using a multi-dimensional Halton sequence
in order to vary the position, shape, and color attributes of each droplet.
This reduces clumping and yields an approximately even coverage of
randomized values.

Rendering Pipeline

Prior to generating droplets, we construct a gradient image from the
input, and then apply blur and gamma adjustment to the gradient vec-
tors. These operations are implemented in Halide [Ragan-Kelley et al.
2012] to portably exploit multithreading and vectorization on our tar-
get platforms.

Our rendering pipeline generates droplets in several discrete stages:
First, a base layer consisting of large and highly opaque droplets is
created to efficiently cover the canvas. Second, a group of uniform
droplets are placed uniformly over the canvas at varying sizes, such
that the number of droplets at a given size varies inversely with the size.
Finally, a set of detail droplets are placed nonuniformly, with density
based on the input image gradients and proximity to human faces. The
placement of detail droplets follows the idea of [Wexler and Dezeustre
2012] by using an image-based importance sampler. The three droplet
types are shown in Figure 1. Each generated droplet is stored in a pri-
ority queue that provides rapid access to the largest (longest) droplet.

Once all droplets have been generated, they are composited onto a
fixed canvas layer in largest-to-smallest order, as proposed in [Hertz-
mann 1998]. Prior to compositing, each droplet is optionally per-
turbed, as described below, to produce temporally coherent animations.

-«

sarca Gt G . E
nocn P e P ¢

\
\l ey H ooy l_.( P (
Figure 3: Core components of our painterly rendering pipeline.

Droplet Perturbation

The nominal position of each droplet is obtained either directly from
the RNG, or (for detail droplets) indirectly via the importance sampler.
In order to generate an animated output, we position the droplet dy-
namically by perturbing this position over time according to a closed
Lissajous curve of user-specified relative frequencies. The size of the
curve is based on the droplet’s length, producing smaller perturbations
for smaller droplets. This helps to preserve detail. While all droplets
use the same overall curve shape, their initial phases are uniquely de-
termined by the RNG. We adjust the droplet’s colors based on its per-
turbed position. To improve temporal coherence, we use the size and
orientation from the original, unperturbed position.

Figure 4: Above: painterly rendering of a scene in Strasbourg;
Below: crops of three successive frames from resulting animation.

References

HERTZMANN, A. 1998. Painterly rendering with curved brush strokes
of multiple sizes. In SIGGRAPH "98, ACM, SIGGRAPH °98.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algorithms
from schedules for easy optimization of image processing pipelines.
ACM Trans. Graph. 31, 4 (July).

WEXLER, D., AND DEZEUSTRE, G. 2012. Intelligent brush strokes.
In ACM SIGGRAPH 2012 Talks, ACM, SIGGRAPH ’12.



