Adaptive Importance Sampling for Multi-Ray Gathering

Ivan Neulander
Objective

- Minimize noise during *ray gathering* operation
 - Integrating radiance over solid angle at a fixed position
Importance Sampling

- Alter sample choices and weights in order to reduce sample variance
- Commonly based on:
 - BSDF
 - Lighting environment
 - Both (MIS)
- Difficult to account for occluding geometry
Adaptive Importance Sampling

- Allows importance sampler to adapt to ray occlusion
 - Reduces ray density along occluded directions
 - Does not introduce bias
 - Works with other IS schemes
Example: Infinite Area Light

- Uniform
- PHIS
 - Pharr-Humphreys IS
- PHIS + AIS
 - Pharr-Humphreys + Our Adaptive Importance Sampling
Example: Infinite Area Light
Initial Idea #1

- For each occluded ray, adjust MIS to favor BSDF over lights
 - Does not generally reduce noise
 - Usually increases it
Initial Idea #2

- Modify cdfs of PH sampler dynamically based on ray-sampled directions
 - Does reduce noise, but:
 - Too expensive for large maps
 - Does not generalize to arbitrary area lights
Our Approach

- Each ray is rated by the renderer
 - Compares actual radiance to unoccluded radiance
- Rating is incorporated into an *affinity map*
 - Spherical mapping: direction \rightarrow pixel coordinate
- Future rays are stochastically accepted or rejected based on the affinity map
- New batch of rays starts with empty affinity map

$r = 0.1$
(θ, ϕ)
Affinity Map

- Multi-Resolution spherical texture
 - Larger pixels \Rightarrow less variance but less directional specificity
 - We use highest resolution where affinity < 1 (else 1)

- 3 float channels:
 - [affinity sum, weight sum, reset counter]
 - [affinity sum, weight sum] start at [1, 1] \Rightarrow biased toward high affinity

0 rays 32 rays 128 rays
Querying and Updating Affinity Map

\[
\text{affinity}(\theta, \phi) = a_{\text{min}} + \frac{\text{map}(\theta, \phi)[0]}{\text{map}(\theta, \phi)[1]} (1 - a_{\text{min}})
\]

\[
a_{\text{min}} = \frac{1}{(\text{tol} \cdot \text{height}_{\text{map}}^2)}
\]

\[
w = \frac{1}{\text{affinity}(\theta, \phi)}
\]

\[
\text{map}(\theta, \phi)[0] + = rw
\]

\[
\text{map}(\theta, \phi)[1] + = w
\]

“penalizes” large pixels
Stochastic Ray Rejection

- **Russian Roulette:**
 Each ray is stochastically accepted or rejected based on its *affinity* value.

- **Rejected ray is skipped without tracing or shading**
 - Does not count toward desired ray total

- **Accepted ray is traced and shaded**
 - Counts toward desired ray total
 - Weight is scaled by $1/affinity$
Unconditional Ray Rejection

- Rays outside BSDF support are always rejected
 - Do not count toward desired ray total
 - No weight adjustment following non-rejection
Adaptive Sampling

- We continue drawing rays from a batch until n are accepted.
- We count rejected rays as zeros but do not sample them.
- Two problems:
 1. Sample stratification is tricky
 - Unstratified sampling is noisy
 2. Selection bias
 - Average for ray batch is biased toward high-affinity directions
Sample Stratification

- Two issues:
 1. Total sample count is unknown
 2. Only a random subset of samples is used

- Simple random sampling works, but is noisy

- Our approach:
 use 3-D Halton sequence for sample placement and rejection
Selection Bias: Problem

- Analogy:
 Country where people continue having children until n boys (50% chance of boy vs. girl)
 - Child \rightarrow ray
 - Boy \rightarrow accepted ray
 - Family \rightarrow batch of ray
 - Average among all children: 50% boys (unbiased)
 - Average family: >50% boys (biased)
 - Need family average to be unbiased
 - All families carry equal weight in our census

Example:
- e.g. $n = 2$:
 - BGB
 - GBGB
 - BGGGB
 - ...
Selection Bias: Solution

- To remove bias:
 Continue having children until $n+1$ boys but reject last boy

- Back to gathering a batch of n accepted rays:
 - Keep sampling until $n+1$ accepted rays
 - Count all rejected rays after n rays
 - Ignore the last (accepted) ray

- E.g. $n = 3$, $p = 25$
 - Biased: 0010000101
 - Unbiased: 0010000101001
 ignored
Shadow Edge Problem

- Russian roulette can produce noise

AIS setting

off aggressive
Shadow Edge Solution

- **Conservative Rejection:**
 - any increase in affinity →
 force high affinity at and around current pixel (1-pixel border)
 - Wastes more rays on “dark” directions...
 - …but avoids missing rays on “bright” directions

- **Example** ($tol = \infty \Rightarrow a_{min} = 0$)
 - Affinity =
 - $1 / 1 = 1.0$
 - $1 / 2 = 0.5$
 - $1 / 4 = 0.25$
 - $1 / 8 = 0.125$
 - 1 (forced)
Shadow Edge Solution: Result

- Good balance of noise reduction at shadow interior vs. edges

off aggressive conservative

AIS setting
Results: render times match

- Model: 400k tri
- Lighting:
 - Infinite area light with HDRI texture
 - 2 sphere area lights
 - 1 plane area light

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>AIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal rays/pixel</td>
<td>158</td>
<td>116</td>
</tr>
<tr>
<td>CPU time per frame</td>
<td>174.9s</td>
<td>174.8s</td>
</tr>
</tbody>
</table>
Results: render times match

AIS
Performance Considerations

- **Affinity map overhead**
 - Speed: 2-5%
 - Memory: < 100KB typically

- **Time cost of ray rejection: depends**
 - Benefits from efficient underlying IS
 - No rejection sampling \rightarrow expensive to adjust IS profile on the fly

- **Additional rays being traced and shaded: depends**
 - Accounts for most of the render time increase with AIS
 - But these rays tend to contribute significantly to surface irradiance
Future Work

- Allow for perturbation of ray origins in batch
 - Idea: bias affinity toward 1 as origins diverge
- Automatically disable AIS in some cases
 - E.g. giant penumbra
- Improve parametrization and filtering of affinity map
 - Point-sampled lat-long map is fast, but not ideal
 - Use less distorting mapping, bilinear filtering
Conclusion

- Thank you to Rhythm & Hues
 - Keith Goldfarb
 - Kevin Beason
 - Chris Rogers
 - Ryan Gillis

- This talk:
 www.neulander.org/work#sketch2011