Rendering Generalized Cylinders using the A-Buffer

Ivan Neulander

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

(© Copyright by Ivan Neulander 1997

i

Rendering Generalized Cylinders using the A-Buffer

Ivan Neulander
Master of Science
Graduate Department of Computer Science
University of Toronto

1997

Abstract

A variety of objects modelled in computer graphics can be efficiently approximated
with generalized cylinders, particularly when they are viewed at a relatively small scale.
In this thesis we present a unique way of rendering generalized cylinders using polygon-
based projective rendering: a rendering meta-primitive called the paintstroke. Paint-
strokes allow for the concise modelling and efficient dynamic tessellation of generalized
cylinders, making direct use of their screen-space projections so as to minimize the num-
ber of polygons required to construct their images. The resulting savings in vertex
transformations, rasterization overhead, and edge antialiasing more than repay the cost
of the tessellation. Used in conjunction with our A-Buffer polygon renderer, paintstrokes
achieve a good balance of speed and image quality when drawn at small to medium scales,

generally surpassing other methods for rendering generalized cylinders.

il

iv

Acknowledgments

A number of people have contributed to the research and the writing that went into
this thesis. I wish to thank my supervisor, Michiel van de Panne, for suggesting an initial
direction for my research, for giving me the guidance and motivation to complete it, and
for tirelessly reviewing (as evidenced by the dreaded “sea of green”) and improving upon
my thesis drafts. Thanks are also due to my second reader, James Stewart, for the many
subtle observations and insightful suggestions from which the thesis has benefited.

The rest of my colleagues at DGP deserve credit as well, particularly Fabrice Neyret,
who has always eagerly and deftly answered my spur-of-the-moment graphics-related
questions, and has occasionally even participated in debugging my code! I am also
grateful to my friend and fellow graduand, Nick Torkos, for finding a practical application
for my rendering software in his impressive quadruped animations.

Finally, I am forever indebted to my parents for their love, support, and encourage-

ment, without which this thesis would never have materialized.

I gratefully acknowledge the NSERC scholarship that has funded my work toward this thesis.

vi

Contents

1 Introduction 1
1.1 The Purpose of the Paintstroke Primitive 3
1.1.1 Motivation 3

1.1.2 Applications 3

1.2 Features of Paintstrokes L 4
1.2.1 Paintstroke Tessellation 5)

1.2.2 Polygon Rendering 5

1.3 Scope e 6
2 Alternative Methods for Rendering Tubes 9
2.1 Overview of Polygon-Based Models 9
2.1.1 Static vs. Dynamic Models 9
2.1.2 Static Polygonal Models 10
2.1.3 Dynamic Tessellation 12
2.1.4 Dynamic Surface Simplification and Refinement 15

2.2 Particle Systems 17
2.2.1 Brush Extrusions o o o 18
2.2.2 Cone Spheres 19
2.2.3 Polylines with Precomputed Shading 20

2.3 Global Texture-Mapping Methods 21
2.4 Volumetric Textures 23
2.5 SUMMATY oo e e e e 24

vii

3 The Paintstroke: A Generalized Cylinder Primitive 25

3.1 Representation Lo 25
3.1.1 Position 28
3.1.2 Radius 29
3.1.3 Colour 30
3.1.4 Opacity o 31
3.1.5 Reflectance 32

3.2 Tessellating the Paintstroke 33
3.2.1 Geometric Transformations and Interpolant Generation 34
3.2.2 Lengthwise Subdivision 36
3.2.3 Breadthwise Subdivision 44
3.2.4 Computing the Normals 49
3.2.5 Endcap Generation, 54
3.2.6 Problems with High Screen Curvature 54

3.3 Special Rendering Effects 0000 56
3.3.1 Lengthwise Opacity Variation 56
3.3.2 Breadthwise Opacity Variation 59
3.3.3 Global Shading Algorithm 60

3.4 Summary 63

4 Rendering Polygons Using the A-Buffer 65

4.1 Overview of the A-Buffer o000 65

4.2 Fragmentso 67
4.2.1 The coverage mask field, mask 68
4.2.2 The tag identifier field, tag 69
4.2.3 The colour field, colour 69
4.2.4 The opacity field, opacity L. 69
4.2.5 The minimum and maximum z-value fields, Zyi, and Zgay 70

4.3 Rasterization 70
4.3.1 Bilinear vs. Constant-Increment Interpolation 70

viil

4.3.2 Computing the Plane Equations 71

4.3.3 Problems with Nonplanar Polygons 74
4.3.4 The Dynamic Triangulation Algorithm 75
4.3.5 The Rasterization Algorithm 78
4.3.6 The Local Shading Algorithm 79
4.4 Blending the A-Buffer Fragments 84
4.5 SUmMMAary e 87
Results 89
5.1 Evaluating Paintstrokes oo 0oL 89
5.1.1 Performance 89
5.1.2 Other Features 92
5.1.3 Limitations and Proposed Improvements 92
5.2 Comparison with Static Polygonal Models 97
5.2.1 Polygon Extrusion Algorithm 98
5.2.2 Properties of Polygonal Extrusions 99
5.2.3 Benchmark Comparison 102
5.2.4 General Remarkso 107
5.3 Comparison with Dynamic Polygonal Models 108
5.3.1 Blinn’s Optimal Tubes 108
5.3.2 General Methods oL 109
5.4 Comparison with Particle Systems 110
5.4.1 Brush Extrusions o o 110
5.4.2 Cone-Spheres 111
5.4.3 Polylines with Precomputed Shading 112
5.5 Comparison with Global Texture-Mapping Methods 113
5.6 Comparison with Volumetric Textures 114
5.7 SUMMATY oo e e 115
Conclusions and Future Work 117
6.1 Conclusions 117

X

6.1.1 Summary 117

6.1.2 Contributions 118

6.2 Directions for Future Work oL 119
6.2.1 Alternative Representation of Surface Normals 119

6.2.2 Non-Circular Cross-Sections for Paintstrokes 120

6.2.3 Texture-Mapping 122

A Details on the Polygon Renderer 123
A.1 Rasterization Algorithm 0oL 123
A.2 Determining the Sampling Rate of the Shading Model 128

B Blending the A-Buffer Fragments 131
B.1 The BlendFragment Function 131
B.2 The Blending Formulas L. 134
B.2.1 Basic Definitionso oo 134

B.2.2 Axioms 136

B.2.3 Useful Derivations 136

B.2.4 Recursive Blending Formulas 138

B.2.5 Blending Formula 1: M; 138

B.2.6 Blending Formula 2: oz and Cz when M, N M; =0 138

B.2.7 Blending Formula 3: oz and Cz when M, = M; 139

B.2.8 Blending Formula 4: o and C3 when M; C M, 143
Bibliography 147

List of Tables

5.1 Comparison of paintstrokes with statically tessellated polygonal models. . 105

x1

xii

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12

A few sample paintstrokes rendered using our algorithm. 2
An example of high geometric detail that is captured with paintstrokes. . 4
Approximate speed/quality characteristics of various rendering methods

applied to tubular objects. 7
Efficient subdivision of a Bézier curve segment. 14
Sample polygonization of an optimal tube. 15
The vertex split and edge collapse operations. 17
A pair of cone-spheres. 19
The two angles that specify a polyline cylinder’s reflectance. 21
Sample rendered paintstroke with control points indicated. 26
Paintstroke with piecewise position and radius components shown. 27
The Catmull-Rom spline. 28
The geometry of our eye-space coordinate system. 29
Variation in the radius component of a paintstroke. 30
Variation in the colour component of a paintstroke. 31
Simple variation in the opacity of a paintstroke. 32
Intuition for lengthwise opacity variation. 32
Variation in the reflectance component of a paintstroke. 33
Example of our dynamic tessellation compared to traditional static tessel-

lation. e 34
Stages of paintstroke tessellation. 0oL 35
The elements of Position Constraint I. 37

xiii

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21
3.22
3.23
3.24

3.25
3.26

3.27
3.28
3.29

3.30
3.31
3.32
3.33
3.34
3.3
3.36

Geometric interpretation of 0,40,o 39
Thickness distortion resulting from inadequate lengthwise subdivision. . . 39
Geometric interpretation of fabposz(t) dt — %[pos,(a) + pos,(b)]. 40
A function with non-monotonic derivatives. 42
Breadthwise tessellation schemes for the three levels of quality. 45
Paintstrokes generated at the three rendering quality levels. 45
Paintstroke orientation and radius derivative determine side visibility. . . 47
A paintstroke rendered using two values for tol,;,4, one reasonable and the

other excessive. 48
The view-dependent out vectors along the centre and edge of a segment. 48
The complete set of out vectors relative to the given viewing direction. . 49
A cross-sectional view of a truncated cone. L. 51
Breadthwise distributions of normals for a true cylinder and a linearly

interpolated polygonal representation. 52
Normals interpolated using a small (bottom) and a larger (top) nudge factor. 53
Breadthwise normal distributions and their implied surface shapes for

paintstrokes. oL 53
Endcap construction. oL Lo 54
A paintstroke with high screen-projected curvature. 54
Tessellation meshes producing bowtie polygons at all three levels of ren-

dering quality for a paintstroke of sharp screen-space curvature. 55
T-junction produced by splitting a bowtie polygon. 56
Lengthwise opacity variation simulating volume opacity.. o7
Tube used in the opacity comparison. o7
Exact vs. interpolated opacity values for ¢ [0°,45%. 58
Implementation of breadthwise opacity variation. 59
Two types of breadthwise opacity variation. 60
Breadthwise opacity variation used to simulate the Fresnel effect in a

stream of water., 61

xiv

3.37

3.38

3.39

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

6.1

Al

Global normals and depth values assigned to the control points of a paint-
stroke. . . . L
Penetration values at various light angles for a given global normal and
depth. o

Example of a global shading effect.

A coverage mask produced by rasterizing a small polygon, with a super-
imposed grid indicating subpixel positions.
Fan of triangles used in computing the average normal.
Orientation-dependency of bilinear interpolation for a nonplanar polygon.
A polygon subdivided by the dynamic triangulation algorithm.
An area function, as defined by ¢; and ¢o.
Paintstrokes rendered with and without dynamic triangulation..
A typical polygon.
The elements of the Phong shading model.
Problems with using an average normal for local shading.

The 16 arrangements of sampling grids used in our model.

Images generated with minimum, maximum, and adaptive sampling rates.

A paintstroke rendered at the three quality levels.
A tapering quality-two paintstroke viewed head-on.
Transparent paintstrokes under sharp screen curvature.
Extrusions of several regular polygons to produce tube tessellations. . . .
View-dependent thickness ranges of polygon extrusions.
A tube that becomes nearly collinear with the view vector.
Paintstroke-based and static models of the benchmarked tube.
Models of the tube used in our comparison.

Example of an image not suitable for rendering with a texture map. . . .
Circular vs. angle-interpolated normal profiles.

Sampling positions for rasterization.o

XV

61

62
63

68
72
74
7
76
77
79
80
83
84
85

93
95
95
98
100
101
103
104
113

A2
A3

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Close-up of a fragment row. 125

0y, the greatest angular increment for the horizontal scanning direction.

(0, is analogous.) 130
Fragment arrangement suitable for Blending Formula 2. 139
Fragment arrangement suitable for Blending Formula 3(a). 139
Fragment arrangement suitable for Blending Formula 3(b). 139
Geometric interpretation of k for intersecting fragments @ and b. 141
Regions of Intersection.o 141
Fragment arrangement suitable for Blending Formula 4(a). 144
Fragment arrangement suitable for Blending Formula 4(b). 144

xvi

Chapter 1

Introduction

The ability to make pictures with a computer has entertained, enlightened, and challenged
us for decades. From its humble beginnings in the 1950’s, the study of computer graphics
has spawned a multi-billion dollar industry and remains one of the most rapidly expanding
areas of computer science. One of the many reasons behind its growing popularity is the
power it provides to rapidly and precisely translate a complex specification into a realistic
image. This task can be divided into two basic phases: building the specification, or

modelling, and generating the image, or rendering.

The modelling and rendering processes are linked by the concept of a rendering prim-
itive, which is a member of the limited class of objects that can be directly rendered by
the computer hardware. All other types of objects need to be composed of these basic
building blocks, into which they are ultimately decomposed before they (or rather, their
constituent primitives) are to be rendered. Examples of 3-D rendering primitives in a

typical graphics system are points, lines, and triangles.

While a scene description could be fashioned purely out of rendering primitives, its
construction would typically be an onerous task for the modeller. Many types of objects,
particularly those with curved surfaces, can only adequately be approximated using a
large number of finely distributed primitives, making them painstakingly slow and error-
prone for a human to construct. A better approach is to invoke a computer program
to translate the object’s representation expressed in some more convenient form (such

as a parametric surface defined using control points) into rendering primitives. This

2 CHAPTER 1. INTRODUCTION

translation can either be done during the modelling phase, whereby the primitives output
by the translator are directly incorporated into the model that is passed to the renderer,
or it can be done as a preface to the rendering phase, in which case the model contains
the compact description, which is automatically decomposed into primitives at rendering
time. The latter alternative has the advantage of being user-transparent: the modeller
treats the compact representation of the object as though it were a rendering primitive;
its translation into actual primitives happens behind the scenes. Because this type of

object is not a true primitive, but it behaves like one, we call it a meta-primitive.!

In this thesis we will develop and explore a meta-primitive called the paintstroke,
designed for rendering generalized cylinders using a polygon-based projective rendering
system. We define a generalized cylinder as the surface produced by extruding a circle
along a path through space, allowing the circle’s radius to vary along the path. During
the extrusion, the circle’s orientation is such that the plane it spans is always orthogonal
to the path. We will show that, in addition to providing a convenient and succinct
representation for generalized cylinders, paintstrokes can offer significant advantages over

comparable methods in rendering these surfaces.

Figure 1.1: A few sample paintstrokes rendered using our algorithm.

!Having distinguished between the two, we will frequently use the term ‘primitive’ to denote a ‘meta-
primitive’; allowing the context to indicate which meaning is intended.

1.1. THE PURPOSE OF THE PAINTSTROKE PRIMITIVE 3

1.1 The Purpose of the Paintstroke Primitive
1.1.1 Motivation

The work presented in this thesis is motivated largely by the observation that (1) a
significant portion of objects we see around us are thin and roughly tubular in shape,
especially when viewing natural phenomena; and (2) the current methods for rendering
high quality images of such objects at small to medium scales are not as efficient as
they could be. Our goal in designing the paintstroke was to furnish the user with an
effective means of rendering these objects at a variety of scales, providing a good balance
of rendering speed and image quality for tubes between one and ten pixels in screen-

projected thickness, which is where other methods generally fail to do so.

1.1.2 Applications

Because they are limited to modelling generalized cylinders, paintstrokes are not suitable
for designing arbitrary objects. This specialization, however, allows for highly optimized
rendering that consumes less time, memory, and bandwidth than more general methods.
Thus, paintstrokes can serve as inexpensive building blocks for highly complex geom-
etry. Combined in large numbers, they can be used to efficiently render a variety of
detailed natural phenomena such as fur, hair, branches, twigs, and pine needles. Simpler

structures like wires, hoses, and pipes are equally suitable.

By taking advantage of their view-dependent tessellation scheme, paintstrokes can
very inexpensively approximate volumetric opacity and Fresnel effects, making them
useful in rendering water streams, icicles, and wisps of smoke, to name a few examples.
This has traditionally been difficult to accomplish with other projective-rendering meth-
ods, necessitating the expensive solution of ray-tracing. Finally, a global shading function
can be used to approximate self-shadowing for globally convex objects uniformly layered
with paintstrokes, offering a very inexpensive and reasonably effective alternative to more

sophisticated methods like shadow-mapping [Wil78, RSC87].

4 CHAPTER 1. INTRODUCTION

Figure 1.2: An example of high geometric detail that is captured with paintstrokes.

1.2 Features of Paintstrokes

As mentioned, the paintstroke is a dynamically tessellated polygon-based meta-primitive.
There are two basic phases to rendering it: (1) tessellate it into polygons, and (2) render
the polygons. Chapter 3 is devoted to the first phase, and Chapter 4 to the second.
Although polygon-based projective rendering was by no means the only choice for the
paintstroke’s infrastructure, it is well-suited to the scope and applications of the primitive.
As an alternative, ray-tracing would be a considerably slower way to render polygons at

the scale for which paintstrokes are intended.? Abandoning polygons for implicit or

2 At much smaller scales, it would become viable, since it would eliminate the inefficiency of touching
pixels multiple times (when rendering opaque objects), which becomes the major drawback of projective
rendering.

1.2. FEATURES OF PAINTSTROKES 5

parametric surfaces would, on the other hand, involve working with a far more complex

(and probably more computationally expensive) representation than that of our approach.

1.2.1 Paintstroke Tessellation

When rendering a curved surface using polygon primitives, at some point the surface
must be tessellated into polygons. Because this process consumes time, it is often done
only once, storing the tessellated polygons in place of the curved surface they represent.
Thus, the tessellation contributes nothing to the rendering time, having been performed
as a pre-processing step. Such an approach is known as static tessellation.

Paintstrokes are not rendered in this way. We maintain a compact descriptive model of
the generalized cylinder, as will be explained in Chapter 3. The tessellation occurs every
time the model is rendered, following its transformation into eye-space. Although this
dynamic tessellation contributes to the overall rendering cost, it capitalizes on important
symmetries and view-invariances of the generalized cylinder, which permit its screen
projection to be accurately tiled with only a small number of relatively large polygons.
The resulting savings in vertex transformations, rasterization overhead, and A-Buffer
fragment blending more than compensate for the tessellation cost. Furthermore, by
continually adjusting the granularity of their tessellation, paintstrokes smoothly adapt

their level of detail to the scale at which they are rendered.

1.2.2 Polygon Rendering

Since paintstrokes are ultimately rendered as polygons, a fast, high-quality rendering en-
gine for polygons is essential to our approach. Due to the small scale at which paintstrokes
may be drawn, the problem of aliasing needs to be addressed, both along the edges and
near specular highlights. Our solution was to implement an A-Buffer algorithm [Car84]
with adaptive Phong supersampling. In addition to fast and accurate edge antialiasing,
the A-Buffer also allows for precise transparency blending and reasonable antialiasing
of interpenetrating (or touching) surfaces, both of which are difficult to achieve with
standard Z-Buffer implementations. The adaptive Phong shader dynamically varies the

number of Phong samples per pixel, depending on a number of parameters, including

6 CHAPTER 1. INTRODUCTION

surface specularity and per-pixel normal variation. Both of these techniques are detailed
in Chapter 4.

While our polygon renderer has several features specifically geared toward paint-
strokes, it is a nevertheless general-purpose rendering engine. Among other things, it
allows the modeller to arbitrarily combine paintstrokes with standard polygons, set cam-
era orientations and change lighting parameters. This has enabled us to generate many

useful images and animations that go beyond simply testing the rendering of paintstrokes.

1.3 Scope

Because paintstrokes capture the full geometry of a scene, they are ideally suited to a
sufficiently large scale that allows all of their geometric detail to be seen. Although
intended for rendering tubes one to ten pixels in thickness, they can accommodate a
much wider variety of scales. Thicknesses ranging from a fraction of a pixel to hundreds
are possible. Despite this flexibility, their usefulness at these extremes is limited. At very
small scales, aliasing problems begin to exceed the paintstroke’s antialiasing capabilities
and image quality suffers. In addition, the per-pixel rendering speed diminishes due to
high oversampling of the shading function. At this scale, other techniques that simplify
or altogether eliminate the underlying geometry (such as texture-mapping or volumetric
textures) are reasonable alternatives.

At the same time, there is a limit to using paintstrokes to model objects having large
screen coverage. Due to the simplicity of their shape and colour attributes, they are
generally not suitable for close-up images, unless the object being modelled happens to
be a generalized cylinder with a simple lengthwise colour variation. Thus, the perfect
scale for paintstrokes is an intermediate one, where the full geometry of a scene is visible,
but the discrepancy of each paintstroke’s appearance with that of the object it represents
is not too conspicuous.

As an example, consider using paintstrokes to model tree branches in a forest. If
viewed from an airplane flying high overhead, this scene would be better rendered with
another technique, such as texture mapping. The geometry of the branches appears at

such a fine scale that it can be adequately represented as just a colour variation across

1.3. ScCOPE 7

Volumetric Texture

Particle System with Precomputed Lighting

Paintstroke

General-Pur pose Dynamic Polygonal Model

Static Polygonal Model (single LOD)

Rendered Size of Primitive

Figure 1.3: Approximate speed/quality characteristics of various rendering methods ap-
plied to tubular objects.

a large scale model. On the other hand, if the scene is viewed by a person passing
through the forest, the paintstroke model will be appropriate for the majority of the
visible trees. Only the ones close to the viewer would need to be rendered with a more

general technique.

Figure 1.3 gives some insight into the range of scales at which paintstrokes and com-
parable rendering methods are most useful. It also depicts the relationship between

these scales and the corresponding image quality and rendering speed. Although sparse

8 CHAPTER 1. INTRODUCTION

in details, it gives a general sense of each method’s scope and allows for some basic
speed/quality comparisons between them.

Because no single chart could summarize all rendering scenarios, we have made a
number of assumptions in formulating ours. The measure of image quality shown has
been normalized to the highest quality achievable using standard projective rendering.
Features such as radiosity, glossy reflection, and refraction are not considered. Rendering
speed is expressed in per-pixel rather than per-primitive terms. This explains why the
speed of several methods shown drops off at smaller scales.

The two methods most similar in scope to paintstrokes are general-purpose dynamic
polygonal models (of which paintstrokes are a specific instance) and particle systems.
Volumetric textures become reasonable alternatives at very small scales. A detailed
discussion of these methods will be the main thrust of Chapter 2. Finally, after we have
examined the paintstroke primitive in depth, we will compare it with these methods.

That will be the topic of Chapter 5.

Chapter 2

Alternative Methods for Rendering
Tubes

In this chapter we examine some possible alternatives to paintstrokes, most of which
were introduced in Chapter 1. We do not limit our modelling domain strictly to general-
ized cylinders, but consider all objects that are reasonably approximated by generalized
cylinders at some scale. This considerably broadens the scope (and usefulness) of our

model.

2.1 Overview of Polygon-Based Models
2.1.1 Static vs. Dynamic Models

The simplest type of polygonal model is one that is static, consisting of a fixed set of
polygons. These may be directly specified by the modeller, generated by a tessellation
routine applied to a non-polygonal (usually parametric or implicit) surface, or derived
by modifying an existing polygonal surface. Any work needed to obtain these polygons
is done during a pre-processing phase, so that it does not consume rendering time. In
contrast, dynamic models create or modify the polygonal representation of a model during
rendering. Normally, this is done either by tessellating the model from a parametric or
implicit surface, or by simplifying or refining an existing polygonal model into the one

that is rendered.

10 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

2.1.2 Static Polygonal Models

The most obvious advantage of a static model, aside from its simplicity, is the processing
time saved by mot modifying its representation during rendering. Because the cost of
polygonizing a static model is not included in the cost of rendering it, this type of model
normally consists of a very efficient polygon mesh® constructed by slow but high-quality
algorithms. Quite often, such algorithms will provide a great deal of flexibility in setting
error tolerances that determine the allowable deviation of the output polygonization from
the original surface. A good example is the work on simplification envelopes by Cohen
et al. [CVM™196]. Their approach computes a pair of implicit surfaces (the inner and
outer envelopes) that define the allowable boundaries of the simplified polygonal mesh.
Given a user-specified polygonal mesh as input, the output is a coarser mesh it that is
sandwiched between the simplification envelopes, thereby satisfying the user-defined error
tolerances while preserving global topology. Many other surface simplification algorithms
that achieve similar results are catalogued by Heckbert and Garland in [HG94].

Although there are cases where static tessellation is the best choice, greater efficiency
and flexibility can usually be attained with dynamic models. This is because of several
important limitations, to be discussed below. In Chapter 5, we will argue that for render-
ing generalized cylinders, a dynamic tessellation scheme like the one used by paintstrokes
is decidedly superior to static tessellation.

One limitation of static tessellation is that it cannot handle any deformation of the
model during rendering, since this would involve modifying the arrangement and shapes
of the underlying polygons—a process that is normally achieved through dynamic re-
tessellation. Since many computer-generated animations portray a large number of
deformable objects, animators seldom rely solely on static models; they use dynamic
tessellation in much of their rendering.

Another disadvantage of the static model is that its way of describing surface—as
a set of polygons—often fails to be concise. For example, representations that specify

a parametric surface using a mesh of control points can usually provide a more precise

!By this we mean that the mesh provides a very good approximation to the underlying surface using
relatively few polygons.

2.1. OVERVIEW OF POLYGON-BASED MODELS 11

description of the model using much less data. Such representations can only be used
with dynamically tessellated models, and generally have far more modest storage and
bandwidth requirements than do static models.

Finally, a static model does not lend itself to effective level-of-detail adjustment when
rendered in an animation. Because such a model is always drawn at a single level of
detail, the speed (or conversely, quality) at which it is rendered suffers when it is viewed
at a variety of screen sizes, since its level of detail can only be ideally suited to a single
scale. This deficiency is frequently redressed by pre-computing multiple static models
of an object at various levels of detail, and selecting the appropriate one based on an
estimate of the model’s screen-projected size. Although this multiresolution approach is
common [HG94, HG97] and works quite well for still images, it poses a critical problem
for animation: Transitions between levels of detail are discontinuous, often causing severe
popping artifacts. These artifacts can be mitigated by compositing the images at the
higher and the lower levels of detail during a transition, but this solution is expensive
and not entirely effectual—not only does it entail rendering the object twice, but it also
requires the rendered images to be alpha-blended.?This is clearly impractical in situations
where a large number of objects are continually shifting levels of detail, as when travelling
through a complex landscape populated with small objects (e.g. blades of grass) whose
distance from the viewer is in constant flux.

Another issue is the tradeoff in choosing the number of levels of detail at which an
object is to be represented. Using too few will result in a poor match between the
ideal number® of polygons for a given scale and the number actually used in the model.
Hence, much of the time, either the rendering will be slower than it could be, or the image
quality will be substandard. Moreover, differences between successive levels of detail will
be large, exacerbating the popping during transitions. On the other hand, using too

many levels of detail can cause frequent switching between levels, which, as described

2Note that there are efficient ways to eliminate this popping artifact by gradually altering the polyg-
onal structure of a model between successive levels of detail. However, because this modification occurs
during rendering, by our definition, it does not apply to static models; we shall discuss this technique in
§2.1.4, under the rubric of dynamic models.

3Such an ideal number would depend on the type of tessellation used, the way of measuring how
accurately the tessellated model approximates a desired object (which is often somewhat subjective),
and an error tolerance.

12 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

above, is undesirable.* Moreover, maintaining a large number of models at various levels
of detail further contributes to the excessive storage requirements of static tessellation.
Lastly, the number and arrangement of polygons within a static model cannot be ad-
justed to suit a particular viewing position. Some dynamic models, such as paintstrokes,
exploit this view-dependency to achieve the same image quality using fewer polygons
than a static model, even when the latter is tessellated at the optimum granularity for
its scale. This result is borne out in Chapter 5, where we present a detailed comparison

between paintstrokes and statically tessellated generalized cylinders.

2.1.3 Dynamic Tessellation

Because dynamic tessellation consumes rendering time, the tessellation speed can have
a noticeable impact on the overall cost of rendering a scene. Thus, the time devoted
to re-tessellating objects must be balanced against any savings afforded by their revised
polygonizations.

Most dynamic tessellation algorithms are for general-purpose parametric surfaces such
as NURBS and Bézier patches, which are applicable to a wide variety of models. In
addition to these general algorithms, we will examine a technique by Jim Blinn [Bli89]

that is specialized for tessellating circular tubes, as is the paintstroke.

Tessellation Methods for General Parametric Surfaces

Nonuniform rational B-splines (NURBS) are a popular way of representing arbitrary con-
tinuous curves using a set of control points and a knot vector. A NURBS surface is a
two-dimensional extension of this curve, defined as the Cartesian product of one NURBS
curve with another, and specified using a mesh of control points spanning the extent of
the desired surface. NURBS curves have two main advantages over their non-rational
counterparts such as Bézier and Hermite curves. First, they are able to exactly represent
quadric curves (e.g. ellipses and hyperbolas), which the latter can only approximate.
And second, they are invariant under the perspective transformation, whereas the latter

are not. Specifically, if the control points of a NURBS are perspective-transformed, the

4Given that the model is stored at sufficiently many levels of detail, the popping will eventually cease
to be a problem. It will, however, be replaced by prodigious demands on storage and bandwidth.

2.1. OVERVIEW OF POLYGON-BASED MODELS 13

NURBS constructed from the transformed points is the true perspective projection of
the original curve. These advantages translate directly to NURBS surfaces, which can
be used for exact representations of spheres, cylinders, and (of interest to us) generalized
cylinders. Likewise, the NURBS surface is invariant under a perspective transforma-
tion. A third advantage is the existence of efficient trimming algorithms which allow the

modeller to trim a NURBS surface with a parametric curve.

Because NURBS are defined as a ratio of B-splines, evaluations tend to be expensive,
requiring division operations [Sil90]. This is a major disadvantage of NURBS, one that
is not shared by non-rational splines. Although a number of optimizations have been
proposed to reduce the cost of evaluating and tessellating NURBS surfaces [SC88, Sil90,
AES94], non-rational spline surfaces are still cheaper to tessellate in most cases. Unless
a highly accurate representations of elliptical or hyperbolic solids is needed (which would
require a large number of control points to be adequately approximated with non-rational
alternatives), or the invariance under the perspective transform is particularly valuable,

it is generally more efficient to use non-rational parametric surfaces.

A wide variety of non-rational parametric surfaces are used in modelling. They are
based on families of B-Splines, Bézier curves, Hermites, and others. Although each of
these classes of curves has unique modelling characteristics, they are all equivalent from
a rendering standpoint. That is to say that a curve belonging to any one of them can
be expressed in terms of any other. For example, a B-spline can be expressed as a
Bézier curve with a different set of control points. This equivalency allows these curves,
and analogously, the surfaces based on them, to be rendered using a single algorithm,

regardless of what class of spline was used to model them.

Among the more efficient evaluation algorithms are forward difference methods, which
are best suited to (parametrically) evenly spaced evaluation points, and subdivision meth-
ods, which can be used to produce a progressively refined mesh of evaluation points. For
the purpose of dynamic tessellation, the latter approach is the more useful. For Bézier
curves, a particularly efficient subdivision method exists, based on the de Casteljau al-
gorithm [Far88|. This involves averaging the positions of pairs of control points to create

new points that approximate the spline. Given a Bézier segment of 4 control points,

14 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

the subdivision generates two subsegments each with 4 control points (derived from the
averaged points), one of them shared between the subsegments. This is illustrated in
Figure 2.1. Either or both of the subsegments can be subdivided in the same way in

order to refine the approximation.

B origina control point

[new control point
B discarded

Figure 2.1: Efficient subdivision of a Bézier curve segment.

Because the only operations involved are additions and divisions by two, the subdivi-
sion is very inexpensive. Moreover, as suggested by Robert Beach [Bea91], this technique
allows efficient, curvature-dependent, adaptive subdivision. A suitable test for subdivi-
sion is whether the four control points of a Bézier segment are approximately collinear.
If not, the segment is divided in half as described above, and the process is recursively
applied to each half. This algorithm is easily extended to two dimensions to produce a

mesh of evaluation points that can serve as polygon vertices.

Blinn’s Optimal Tubes

Jim Blinn [Bli89] describes a view-adaptive tessellation scheme for Gouraud-shaded cylin-
ders that he calls optimal tubes, and an extension to handle constant-radius generalized
cylinders. Blinn’s approach is similar to our own, in that he applies a view-dependent tes-
sellation to minimize the number of polygons required to produce a high-quality image.
Because Gouraud shading does not interpolate normals, breadthwise subdivisions are
used to capture shading information at visually significant points on a cylinder’s surface.
Assuming a single point-source light and incorporating the Lambertian (i.e. diffuse and
ambient, but not specular) shading model, Blinn polygonizes the region of the cylinder

visible to the viewer into rectangular strips, with boundaries along the cylinder’s silhou-

2.1. OVERVIEW OF POLYGON-BASED MODELS 15

ette lines and along the lines where the illumination “significantly” changes. The latter
occur at the two shadow lines and at the line of maximum (Lambertian) illumination,
where the surface normal is coincident with the central light vector (i.e. halfway between

the shadow lines). An example of this arrangement is shown in Figure 2.2.

Figure 2.2: Sample polygonization of an optimal tube.

As an extension to this tessellation scheme, [Bli89] also presents a method of properly
joining a pair of optimal tubes, eliminating the cracks that would ordinarily appear at
the joint. This is needed when concatenating a series of tubes into a constant-radius
generalized cylinder. However, no algorithm for subdividing the latter into the former is

given.

2.1.4 Dynamic Surface Simplification and Refinement

Surface simplification and refinement differs from tessellation in that it is applied to ex-
isting polygonal meshes in order to produce new ones. Efficient simplification of detailed
polygonal models is the primary goal of these techniques, which may be used in gener-
ating static as well as dynamic models. In the latter case it is also necessary to provide
an inverse transformation that converts the simplified models back into the more com-
plex ones. This transformation is called surface refinement. In conjunction with surface
simplification, it allows a model’s level of detail to continuously vary over a range of
scales.

The notion of surface simplification and refinement can be extended beyond just
the modification an object’s polygonal mesh: It can involve switching between different

types of rendering primitives. An example of such an approach is the tree-rendering

16 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

algorithm by Weber and Penn [WP95]. Based on the desired level of detail, the algorithm
dynamically selects points or lines to replace the more expensive polygons that are used
to model the leaves and branches of a tree. At a sufficiently small scale, the use of these
cheaper primitives can considerably expedite the rendering without compromising image
quality.

Algorithms for surface simplification and refinement are usually quite general in na-
ture, being geared toward different classes of topology (e.g. manifold, degenerate) but
not to shapes as specific as generalized cylinders. Although their generality is for the
most part an advantage, their speed and output quality can be surpassed in very specific

cases by specialized dynamic tessellation algorithms, such as the paintstroke’s.

Progressive Meshes

Hugues Hoppe’s work on view-dependent progressive meshes [Hop97] presents a fast sur-
face simplification and refinement algorithm that makes local adjustments to the gran-
ularity of a model’s polygonal (triangular) mesh based on its eye-space transformation.
Parts of the model that lie outside of the view frustum or that face away from the viewer
are simplified to very coarse levels, whereas regions near the silhouette are refined into a
fine mesh. The screen-projected size of the model is another determinant of overall mesh
granularity.

As in Hoppe’s earlier paper [Hop96| on this subject, the simplifications and refine-
ments to the polygonal mesh are implemented using two basic transformations: the vertex
split, and the edge collapse. The former serves to refine a model by dividing a vertex
into two, thereby forming a new edge and a new polygon. The latter removes an edge
and replaces it with a single vertex, thereby deleting a polygon and simplifying the mesh.
As shown in Figure 2.3, these operations work as inverses to one another, allowing an
original model to be simplified to arbitrarily few polygons and then refined through the
same number of steps back to its original complexity.

Popping artifacts that tend to arise in level-of-detail transitions are addressed using a
technique called the geomorph, which performs vertex split and edge collapse operations

gradually, moving a pair of vertices together or apart over a number of frames. This

2.2. PARTICLE SYSTEMS 17

edge collapse

PN

N

vertex split

Figure 2.3: The vertex split and edge collapse operations.

creates a smooth visual transition at a much lower cost than the alpha-blending approach
described in §2.1.2.

Much to this technique’s advantage, it exploits the temporal coherence of animations
by reusing (and therefore amortizing the cost of modifying) a mesh over many frames.
According to the author, the cost of this dynamic re-polygonization accounts for less

than 15% of the total rendering time on a graphics workstation.

2.2 Particle Systems

Particle systems are a departure from the canon of representing and rendering objects
as surfaces. Many types of material have extremely complex surfaces, which would be
difficult to model and slow to render using a surface-based representation. Fire, smoke,
and clouds are common examples. Particle systems provide a more efficient way of
working with these types of objects, as well as many others.

A particle system describes an image using a (typically) large number small simple
objects called particles. In most implementations, including the seminal work by Bill
Reeves [Ree83] and Reeves and Blau [RB85], these objects are tiny spheres or cubes,
whose motion through space is described using implicit equations which additionally
incorporate an element of randomness. Reeves simplifies the rendering of particles by

treating them as point light sources. This eliminates the issue of visibility, since a pair of

18 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

overlapping particles both contribute equally to the colour intensity over the overlapping
region.® Because of their simplicity, particles permit fast rendering and motion blur. The
latter is useful not only for animation, but also for rendering elongated objects, which
can be represented as the (appropriately configured) motion-blurred trail left behind a
particle.

To render a circular tube with particle systems, one would use motion-blurred spher-
ical particles moving along a desired path. If the diameters of the particles can vary
during the motion, arbitrary generalized cylinders can be constructed. In order to re-
solve visibility and apply proper shading, we would need a more complex particle model
than the one used in [RB85], which handles both of these in an ad hoc fashion suited
only to particular models. Specifically, we would require z-values and surface normals
(or some approximations thereof), neither of which are used by Reeves and Blau.

Implementing motion blur requires integrating a particle’s position over time, which is
an expensive operation if performed explicitly. Fortunately, the simplicity of a spherical
particle allows simple approximations to be used in lieu of a true position-time integral,
expediting the rendering process considerably. Two such methods are brush extrusions,

and the polyline approach.

2.2.1 Brush Extrusions

Brush extrusions, as described by Turner Whitted [Whi83], approximate the temporal
integration of a particle—the brush tip—by rendering it at multiple discrete positions
along a path, without using motion blur. Provided that the sampling frequency is suffi-
ciently high, this concatenation of discrete tip images (samples) produces an apparently
smooth and continuous trail. This method is well suited for real-time user interaction,
using an input device such as a mouse or stylus. The user drags the brush tip along some
path on the screen, as one would do with a paintbrush, and it leaves behind a nicely
rendered antialiased trail (provided, of course, that the tip image is antialiased).
Although the brush extrusions described in [Whi83] are generated by a constant, pre-

computed brush tip image which moves only in the z-y plane, this limitation still permits

50f course, this is only an approximation. In reality, the closer particle should make the greater
contribution, all other things being equal.

2.2. PARTICLE SYSTEMS 19

reasonably accurate rendering of constant-radius 3-D tubes under weak perspective and
near-directional lighting, using a pre-rendered sphere as the tip. A more flexible alterna-
tive, which would allow variable-radius tubes under strong perspective and point-source
lighting, would be to dynamically re-render the brush tip as it moves along the path. A
compromise would be to pre-render the tip at various sizes and store them in memory.
This would permit perspective effects and radius variation, albeit limited by the max-
imum stored radius of the tip. It would still, however, require a near-directional light

source, since the sphere’s shading would need to be constant.

2.2.2 Cone Spheres

In [Max90] Nelson Max presents a way to approximate generalized cylinders that is
similar in spirit to Whitted’s brush extrusions. Instead of rendering a sphere at multiple
points along a path, it is rendered at fewer and more widely separated points. Each
adjacent pair of rendered spheres are then joined using a tight-fitting truncated cone,
as illustrated in Figure 2.4. Whereas the cones form the main body of the resulting
solid, the purpose of the spheres is to provide smooth “elbow” joints connecting adjacent
cones. This approach is argued to be more efficient than brush extrusions because fewer

overlapping images need to be used to render a continuous-looking tube.

N

Figure 2.4: A pair of cone-spheres.

As we shall see in Chapter 3, cone-spheres are quite similar in nature to paintstrokes,
although, unlike the latter, they are not explicitly polygonized. The screen-projected
cone profiles (which are polygonal) and spheres are rendered using a scanline algorithm

with an ad hoc antialiasing mask function. While Phong shading is applied to the cones,

20 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

it is not used directly for the spheres. Instead, the shaded intensities of the two extended
cones that enclose a sphere are blended to derive its shading. This creates reasonably

smooth-looking highlights over a set of cone spheres approximating a curved tube.

2.2.3 Polylines with Precomputed Shading

The polyline approach is a common method of rendering very thin constant-radius tubes:
The tube’s shape is approximated using a set of line segments, whose widths correspond
to the screen-projected thickness of the tube. Usually, this method is applied to circular
extrusions (i.e. constant radius generalized cylinders), although it could in principle be
used for variable-radius tubes as well, by modulating the thickness of the line segments
used—as long as the maximum thickness remains small.

The shading of a polyline model can be performed efficiently using a clever approx-
imation based on the work of Kajiya and Kay [KK89]. The shaded colour assigned to
each line segment is derived from the approximate integral of the Phong function around
the circumference of the (straight) tube represented by the segment. This approxima-
tion is validated by the observation that at small scales, a shaded tube appears to have
a single uniform colour, since the eye cannot discern the variation in brightness across
its breadth. It can be shown that at any point on the tube, the Phong integral is a
function of only two scalars: the angle 6 between the tube’s tangent vector at the point
and the vector from the point to the light source, and the angle ¢ between the tube’s
tangent and the vector from the point to the viewer. This is illustrated in Figure 2.5.
f alone is sufficient to specify the diffuse component of the shading, while both angles
are needed for the specular. Because its domain has only two dimensions, the shading
function for polylines can be precomputed over a range of quantized values and stored
in a 2-dimensional array, allowing fast table-lookup operations to be used in place of
traditional Phong sampling. Moreover, by using analytically computed integrals rather
than point sampling, this approach elegantly circumvents the problem of spatial aliasing
that is inherent in using traditional (i.e. sampling-based) Phong shading with models
having high per-pixel normal variation, such as thin tubes.

A common application for polylines is in rendering hair and, to a lesser extent, fur.

2.3. GLOBAL TEXTURE-MAPPING METHODS 21

Figure 2.5: The two angles that specify a polyline cylinder’s reflectance.

Examples of the former include [LTT91, RCI91|, which make effective use of the pre-
computed shading model in dealing with the high degree of specularity exhibited by
hair. Hair is particularly suitable for the polyline approach because its constituents are
extremely thin in proportion to their length. For instance, when rendering human hair
from several metres of distance using a typical field of view and resolution, the hairs will
be less than a pixel in thickness and possibly dozens of pixels in length. The length is
significant because it largely determines how well the hair would be represented using a
global texture map, as described in the following section. For very short hairs (which
tend to occur in fur, rather than in human hair) texture-mapping entire clumps of hair
becomes a superior alternative to rendering the individual hairs, yielding comparable

image quality at far greater speed.

2.3 Global Texture-Mapping Methods

A fast way to render a large group of objects at a small scale is to pre-render them
from one or more viewing angles and convert the resulting images into texture maps. At
rendering time, these textures are applied to relatively large polygons, which effectively
replace the finely detailed geometry represented in the texture map. For many real-time

applications, this is the only viable way of rendering a geometrically rich model (such

22 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

as a tree) at a small scale, because mapping a texture onto a polygon is so much faster
than rendering a large number of tiny objects. Used under the right circumstances, this
technique can produce high image quality at unparalleled speed. The ideal scenario for
it is one where the entities comprising the texture are sufficiently distant from the viewer

that their parallax and occlusion effects are negligible.

An example of this approach is the common technique called billboarding [NDW93],
which has been used to inexpensively render trees and other complex objects, when
viewed from a distance. At small scales, a tree’s constituent leaves, twigs, and branches
project to sufficiently small screen-space images that a texture map gives an adequate
approximation of their true geometry. The texture is mapped onto a polygon that is
continually rotated to face the viewer, ensuring that the tree image is always orthogonal

6

to the viewing direction.” The polygon’s shape needn’t conform to the tree’s outline;

alpha values are used to “hide” parts of the polygon that are outside of the tree’s image.

More advanced methods combine moderate geometric complexity with texture-mapping
to preserve global aspects of the simplified geometry. The work on multiresolution sur-
face viewing by Andrew Certain et al. [CPD96] allows for the relative proportion of
geometric and colour (i.e. texture) detail to be specified as a rendering parameter. More-
over, the amount of detail in each can be progressively refined in an efficient way, using
wavelets. Although the ability to adjust texture detail is generally irrelevant for render-
ing with texture-mapping hardware (in the paper it was used principally as a variable
form of image compression), the progressive geometry refinement is a useful feature if a
desired frame rate needs to be attained at the possible expense of image quality. When
navigating a scene of variable complexity, each object can be allotted a fixed amount
of time for image refinement, resulting in a steady rendering speed with variable image
quality.

A successful attempt to improve the quality of texture-mapped images at larger scales
is described by Jonathan Shade et al. in their paper on hierarchical image caching

[SLST96]. Their method involves building an object hierarchy of a complex scene and

6The rotation is necessary to prevent the polygon (and the textured image it contains) from being
distorted by parallax when viewed from the side.

2.4. VOLUMETRIC TEXTURES 23

caching the rendered image of each node in the hierarchy for use in subsequent frames.
The cached image is reused by texture-mapping it onto a quadrilateral that is drawn in
place of the original geometry. The hierarchical approach ensures that a large number of
small distant objects are clustered into a single texture map, preventing a proliferation
of small polygons.

What distinguishes this technique from the others is that it applies an error metric to
determine how well a cached image continues to approximate its associated geometry
as the viewer moves about the scene. When the quality of the approximation dips
below a given threshold, the cached image is replaced by a freshly rendered one based
on the viewer’s new position. According to the authors, this permits a roughly tenfold
speed increase over plain view frustum culling when rendering walkthroughs of a complex

outdoor scene, with a minimal reduction in image quality.

2.4 Volumetric Textures

The basic idea behind volumetric textures is to replace volumes of complex repetitive ge-
ometry with sampled distributions of its density and reflectance behaviour, called texels.
Using a volumetric ray-tracer, these distributions can then be efficiently rendered at a
cost that is invariant to the amount of detail stored in the texel (provided that its size
and resolution remain constant). This invariance makes volumetric rendering somewhat
akin to texture-mapping in providing a near-constant rendering time for scenes of arbi-
trary complexity. Unlike texture-mapping, however, volumetric textures correctly handle
parallax and occlusion effects, since texels are truly three-dimensional in nature.

Early work by Kajiya and Kay [KK89] produced impressive results in rendering fur,
using an ad hoc reflectance model based on the cylinder.” This work has been generalized
by Fabrice Neyret [Ney95b] to permit more general reflectance models based on the
normal distributions of ellipsoids, and to allow hierarchies of multiple texel resolutions
that minimize cost and spatial aliasing in the spirit of mip-mapping. Further extensions

by Neyret include methods to deform texels so as to permit some basic forms of animation

"Forms of this reflectance model have found use in other rendering methods, such as the polyline
technique described in §2.2.3.

24 CHAPTER 2. ALTERNATIVE METHODS FOR RENDERING TUBES

[Ney95al, though this is still not as flexible as with conventional geometric models.
Although usable at a wide range of scales, volumetric textures entail the considerable
computational overhead of volumetric ray-tracing. Accordingly, they offer an effective
alternative to the above projective rendering methods only if (1) the general rendering
requirements strain or exceed the capacity of projective rendering (e.g. soft shadows,
accurate reflections and refractions, volume opacity effects), or (2) the amount of per-

texel detail is sufficiently high to take advantage of their near-constant rendering time.

2.5 Summary

As our sampling shows, there are a variety of ways to render tubular objects. Whereas
some methods are sufficiently general to model tubes of arbitrary cross-section, others
are specialized for plain or generalized cylinders, as is the paintstroke. Moreover, some
methods are suited for large-scale rendering while others are only useful at very small
scales. As we shall see in Chapter 5, the paintstroke primitive, although limited in scope,
can usually do a better job in rendering generalized cylinders within its intended range

of scales than all the competing methods presented here.

Chapter 3

The Paintstroke: A Generalized
Cylinder Primitive

In this chapter we examine the structure and properties of the paintstroke primitive, and
develop its dynamic tessellation algorithm. We begin by discussing the way in which
paintstrokes are modelled and represented within our projective rendering framework.
The remainder of the chapter is largely devoted to a detailed account of their tessellation.
We conclude with an overview of the special rendering effects that are possible with

paintstrokes, and briefly explain how these are achieved.

3.1 Representation

The essential properties of a paintstroke can be succinctly described with a one-dimensional
parametric function, ps(7’). The components of this function are visual attributes that
vary along the length of the paintstroke: position, radius, colour, opacity, and reflectance.
All components but the radius are themselves vectors, consisting of related scalar subcom-
ponents. The overall ps function appears in Equation 3.1 below, with the components

ordered as listed above.

pos(T)
rad(T)
ps(T) = | colour(T) (3.1)
op(T')
refl(T")

25

26 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

The ps(T) function is defined using a series of n > 2 control points, {cp,, cpy,-- -,
cp,, ;- Each of these is an arbitrary constant vector bearing a value of ps(7}) at regular
intervals of T;.! The control points are used by the rendering algorithm to generate simple,
visually appealing interpolant functions for all the components. A sample paintstroke
with variation in radius and colour appears in Figure 3.1. The white dots indicate the

positions of the control points.

Figure 3.1: Sample rendered paintstroke with control points indicated.

In our implementation, the pos(7’) and rad(T") components are piecewise-cubic splines.
These provide a reasonable degree of continuity and flexibility, yet can be efficiently gen-
erated, evaluated, integrated, and differentiated. The remaining components of ps(T’)
are piecewise-linear interpolants. While they lack the smoothness of splines, our experi-
ence has shown that the eye is considerably less attuned to derivative discontinuities in
these latter components than to those of the position or radius.

At this point, we introduce a re-parametrization of ps(7"), which will be more useful in
dealing with piecewise functions: we define ps,,(¢) as the section of ps(7T’) where T ¢ [a, b]
such that ps(a) = cp,, and ps(b) = cp,,,;.- The new parameter, t¢€|[0, 1], ranges over a

single section of a paintstroke between a pair of neighbouring control points:
ps,,(0) = cpy, (3.2)

ps,,(1) = cp,, 1 (3.3)

!Besides capturing these discrete values of ps(T'), the control points contain some additional infor-
mation that is used by the global lighting algorithm to simulate the self-shadowing of convex objects
consisting of paintstrokes. We shall ignore this additional information until §3.3.3, in which we present
the global shading algorithm.

3.1. REPRESENTATION 27

As a notational shorthand, we omit the subscript in the new parametrization if the
indices of the bounding control points are implied by the context. For example, we write
ps(?) in reference to ps,,(t), where the value of m is implicit. We will make frequent use
of this shorthand form when we discuss a single section of a paintstroke that is bounded
by an arbitrary pair of adjacent control points. From this point on, our use of the term
section in the context of paintstrokes will be restricted to the portion of a paintstroke
between two adjacent control points. We will use the term segment to refer to a subset

of a section.

rads(0.6)

Figure 3.2: Paintstroke with piecewise position and radius components shown.

Defining all the components of a paintstroke at the same control point is potentially
inefficient if some components exhibit greater variation than others—consider an elab-
orately coloured paintstroke with a simple underlying geometry, most of whose control
points are introduced to store colour information, not geometry. This could be rectified
by modifying our implementation to use a separate set of control points for each compo-
nent or group of components with similar complexity. An alternative approach, discussed

in Chapter 6, is to use a one-dimensional texture to encode non-positional information.

Having presented the general structure of ps(f) and its components, we now shift
our focus to the latter. We examine the components of an arbitrary paintstroke section
ps,, (), deriving each component’s interpolant function from the control point values

assigned by the modeller.

28 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

3.1.1 Position

pos,(t)

(3.4)

The function pos(t) defines the path that the paintstroke segment follows through

R? (in our case, eye-space) using a piecewise Catmull-Rom spline. Given the eye-space

position values py, 1, Pm, Pm+t1, and py,42 at the (parametrically evenly-spaced) control

points, the Catmull-Rom spline extends from p,, to p,,+1, according to the equation

1
pPos,, (t) = 5

-1
2
-1

3
-9

-3
4

1
-1

Pm-1
Pm

Pm+1

Pm+2

t3
t2
t
1

As Figure 3.3 shows, a Catmull-Rom spline is equivalent to a Hermite curve, such

that the tangent vector at each inner control point joins the two surrounding control

points. Because the first and last control point of the paintstroke must be interpolated?,

we double them. This produces linear interpolants for the first and last segments. A

CPm1

Figure 3.3: The Catmull-Rom spline.

future version of our algorithm will likely also incorporate a Bézier spline representation,

which permits more intuitive modelling.

2Notice that a Catmull-Rom spline segment only interpolates between the middle two of the four

control points that specify it.

3.1. REPRESENTATION 29

The Eye-Space Coordinate System

Our eye-space coordinate system, shown in Figure 3.4, has the viewer at the origin and
looking toward the positive z-axis. Orthogonal to the z-axis lies the projection plane,
whose distance from the viewer along the positive z-axis is called the projection distance
and denoted by d,,;.

Given an arbitrary paintstroke section, the unit vector extending from the viewer
in the direction of pos(t) is called the view vector and denoted by view(t). It is used
extensively in the rendering process, and we shall refer to it throughout this chapter.

Observe that view(t) = %_

A

y

view plane

Figure 3.4: The geometry of our eye-space coordinate system.

3.1.2 Radius

The function rad(t) defines the thickness of the segment, measured orthogonally to the
tangent vector of the path, pos'(¢). It is expressed in the same units as pos(t) and can
take any nonnegative value; however, using a value that exceeds the paintstroke’s radius
of curvature yields unsightly folds in the surface.

The radius function is defined as a piecewise Catmull-Rom spline, precisely like each

30 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

Figure 3.5: Variation in the radius component of a paintstroke.

component of pos(t). The model supplies a set of radii {ry,r1,...,7, 1} corresponding
to the paintstroke’s radii at the n control points. As with the positional interpolant, the

first and last control points are doubled.

1 03 3 1] [| [8
rady =t | 2T AT T (3.6)
20 -1 0 1 0| rmn t
02 0 0 [ree| [1
3.1.3 Colour
colour,(t)
colour(t) = | colour,(t) (3.7)
coloury(t)

The colour(t) function is expressed in terms of a red, green, and blue component, denoted
respectively by colour,(t), colour,(t), and colour,(t). These components vary indepen-
dently along the path of the segment. An alternative colour representation in terms of
hue, saturation, and colour value (HSV), would allow easier modelling and provide more
intuitive interpolation, albeit at the expense of (nonlinear) conversions to RGB space.

Our implementation only permits colour variation along the paintstroke, and not
around its girth—the latter is considerably more involved, being view-dependent and
nonlinear in screen-space. In this regard it is similar to texture-mapping, a feature that
is discussed in Chapter 6 as a potential enhancement to paintstrokes.

A colour value is assigned at each control point, and the colour(t) function inter-

polates linearly between these values, along the spine of the paintstroke. Given the set

3.1. REPRESENTATION 31

»

Figure 3.6: Variation in the colour component of a paintstroke.

of (r, g,b) colour points {cg,cy,...,c,_1}, the equation for the interpolated colour value

between control points ¢, and ¢, is

colour,,(t) = (1 — t)c,, + tCpmyt (3.8)
3.1.4 Opacity
OPmin (t)
OpmaI t
op(t) = | e 39)
Opcentre(t)
L Opedge (t)

A segment’s opacity, represented by op(t), can vary both along its length and across
its breadth. The lengthwise opacity is modulated according to the segment’s orientation
relative to the viewer, with the maximum opacity, op,,,,(t), attained when the paint-
stroke’s path is collinear with the view vector, and the minimum op,,;,(¢) when the two
vectors are orthogonal. This corresponds to the intuitive notion that looking along the
paintstroke should yield the greatest opacity, as shown in Figure 3.8. Section 3.3.1 pro-
vides a concrete example of this, and also explains how we interpolate between op,,;, (t)
and op,,,,(t) to obtain the paintstroke’s lengthwise opacity at a given value for t.

In addition to the lengthwise opacity modulation, a paintstroke allows the modeller to
independently set opacity values for the centre and the edges of its screen-projected image.
These values are represented by the functions op,,,.(t) and op,4,(t), respectively. Any

point on the surface of the paintstroke thus has an additional opacity value that depends

32 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

Figure 3.7: Simple variation in the opacity of a paintstroke.

minimum
opacity

maximum opacity

Figure 3.8: Intuition for lengthwise opacity variation.

on its position between the centre and the nearest edge. This breadthwise opacity value

is multiplied by the lengthwise opacity described above to yield an overall opacity.
Each component of the op(t) vector is interpolated linearly along the segment, as

with the colour. Given the set of opacity vectors {0y, 01, ...,0,_1} corresponding to the

n control points, the interpolation is given by

op,,(t) = (1 — t)o, + toy,41 (3.10)
3.1.5 Reflectance
refly (t)
reﬂ(t) = 'reflkd(t) (3.11)
refly, (1)

The function refl(¢) contains the ambient, diffuse, and specular reflectance coefficients

3.2. TESSELLATING THE PAINTSTROKE 33

of a segment. These are used in the local shading model, which we shall describe in §4.3.6.
Like the other ps(t) components, the reflectance function is user-defined. However, it can
also be automatically adjusted by the global shading algorithm, as discussed in §3.3.3.

Given the set of reflectance vectors {rg,ry,...,r,_1}, the reflectance interpolant is

refl,, (1) = (1 — t)r,, + tr,4 (3.12)

Figure 3.9: Variation in the reflectance component of a paintstroke.

3.2 Tessellating the Paintstroke

Traditional tessellation schemes subdivide a surface into a set of world-space or eye-space
polygons. Whereas the arrangement of these polygons is pre-determined, the arrange-
ment of their screen-space projections is view-dependent. The tessellation of a paintstroke
is in a sense the opposite: it yields a view-dependent set of eye-space polygons whose
screen-space projections are pre-determined. The paintstroke in effect directly polygo-
nizes the screen-projection of a generalized cylinder—not the full eye-space surface. This
is what makes the name “paintstroke” appropriate to our primitive: an artist drawing a
three-dimensional tube with a single stroke of the paintbrush capitalizes on the simplicity
of this object’s screen projection, as does our tessellation scheme. Although the view-
dependency of a paintstroke’s polygonization entails dynamic tessellation, it allows the
paintstroke to be drawn from any viewing angle with a very small number of polygons.
As we shall see in Chapter 5, this more than makes up for the cost of the retessellation.

Some of the assumptions behind our methodology rely on weak perspective®, partic-
ularly with respect to surface normals. Because paintstrokes are intended for relatively

small-scale rendering, which typically implies a moderate viewing distance, this assump-

3By this we mean that the perspective projection of an object is very similar to an orthonormal one.

34 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

C 11

AT ———

D e
(a) Our tessellation (b) Static tessella-
scheme tion scheme

Figure 3.10: Example of our dynamic tessellation compared to traditional static tessel-
lation.

tion is not at all unreasonable. But even under fairly strong perspective, we have found
paintstrokes to produce adequate results.

In the following sections, we shall examine the algorithm that performs the dynamic
tessellation. Figure 3.11 indicates the various stages of the tessellation process that will be
examined, shown in the order in which they are performed. Our discussion will generally
proceed in this order, with two exceptions: all optional steps are discussed at the end,
and the Inflection Point constraint is explained after the other Lengthwise Subdivision
constraints, because an understanding of the latter is needed to see the purpose of the

former.

3.2.1 Geometric Transformations and Interpolant Generation

The first step in the tessellation process transforms all the geometric data stored in the
control points {cpy, cpy, ..., cp,_; } from world-space to eye-space. This data consists of
the pos and N, components. The latter is called the global normal vector and is used
for global shading effects, discussed in §3.3.3.

Each section of the paintstroke, bounded by control points {cpy,cp;}, {cp;,cp,},
..»{cp, _s,¢p, 1}, is rendered individually. All the sections are processed in the same
manner, except that the first and last one may be closed off with a polygonal endcap, as
explained in §3.2.5.

A section is handled as follows. First, the polynomial coefficients of the interpolants

3.2.

TESSELLATING THE PAINTSTROKE

paintstroke

Paintstroke Preprocessing
Transform control points

Determine paintstroke quality level

Repeat for each paintstroke section:

Section Preprocessing

Derive interpolant functions, derivatives, integrals
* Apply Global Shading model
* Apply Lengthwise Opacity Variation model

<
<
y

A

L engthwise Subdivision

Inflection Point Constraints
Position Constraint |
Position Constraint |1
Radius Constraint

nBt all constraints satisfied

Y

Breadthwise Subdivision

Determine vertices

Determine normals

* Apply Breadthwise Opacity Variation model
* Endcap generation

!

polygons

* Optiona Steps

Figure 3.11: Stages of paintstroke tessellation.

35

36 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

pos(t) and rad(t) are computed, as well as for their derivatives and antiderivatives.
These coefficients can be precomputed for rad(t) and reused each time the section is
drawn in subsequent frames. The pos(t) component needs to be re-generated for every
frame because the viewing transformations affect this component of the control points.
The following two phases will subdivide the section, first along its length, and then
along its breadth. The lengthwise subdivision breaks the section into segments, each of
which is then divided along its breadth to ultimately produce a set of polygons. That

completes the tessellation.

3.2.2 Lengthwise Subdivision

Once the piecewise interpolants have been generated, the section between each pair of
adjacent control points is recursively subdivided in half into pairs of segments until the
subdivision criterion for all the segments has been satisfied. Whenever a segment is
subdivided, the split occurs at the parametric midpoint, i.e. at ps(0.5). The two halves
are then recursively subdivided in the same manner until no further subdivisions are
required.

A paintstroke segment ps(t) for tefa,b],a < b is either subdivided or advances to
the next phase, depending on the behaviour of its pos(t) and rad(t) components. In
order to advance, it must be approximately linear in pos(t) and rad(t)*, because it is
subsequently drawn as a truncated cone—which is linear in these components. There
are two constraints based on the former and one on the latter. If there are inflection
points in any component of pos(t) or rad(t), these need to be dealt with as described in
§3.2.2 below, since the constraints we use are only valid on interpolants with monotonic

derivatives (within the specified segment).

Position Constraint 1

The first position constraint is based on the angle # between the two-dimensional tangent

!
scr

(a) and pos., (b). These are the (z,y) screen-space projections of the

vectors pos ser

derivative pos'(t) at the segment’s endpoints, ¢ = a and ¢t = b. If 6 exceeds a threshold

“Note that it is already linear (by definition) in the other components.

3.2. TESSELLATING THE PAINTSTROKE 37

Figure 3.12: The elements of Position Constraint I.

value denoted by 0,,4., the constraint forces a subdivision. 6,4, €[0°,90%) is a function
of the segment’s maximum length, as defined below, and a user-adjustable tolerance

parameter toly.

b) are obtained by analytically differentiating the

The values pos’,, (a) and pos.,,(

function pos,,, (t), the screen-projection of the paintstroke’s path. Because our projection
point lies at the origin of the eye-space coordinate system and the projection plane is
orthogonal to the z-axis, determining pos,,,(t) to within a constant offset requires only
three items: the eye-space position pos(t), the projection distance d.,; (as shown in
Figure 3.4), and the scaling difference between screen-space and eye-space coordinates.”
The latter two are effectively combined into the nonzero projection constant c,,.,;, used
in the formulas below. The constant offsets offset, and offset, depend on the viewport

position; they are not computed since they vanish when pos,,,(t) is differentiated.

scr

pos,(t)
Cproj ooy + olfset,
POs,,,(t) = o (3.13)
roj pos (@) T offset,

®We assume an equal scaling for the x and y directions.

38 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

’V Cprog pos! (t)pos,, (t) —Z(pgs’ (t)pos,(t) -|

/ _ o pos?(t

pos,.. (t) - L o posy, (t)pos . (t) — pos’, (t)pos, (1)
proj pos?(t)

(3.14)

/
scr

/
scr

The next step is to normalize pos’,. (a) and pos._.(b), and then compute their dot prod-
uct, which yields cos 6.9 If this value is negative, we know that 6 exceeds the maximum
value of 0,4, (90°) so we subdivide the segment without any further work. Otherwise, we
need to determine 6,,,,. We begin by finding the segment’s maximum length d, defined
as the straight-line distance along the outside of a curved screen-projected paintstroke
segment. If the segment is straight, either side can be used, since their lengths are equal.
The value of d is computed as the distance between the two outside points o, and 0,
which are the points lying on the outside boundary of the segment at ¢ = a and ¢ = b,
respectively. The various elements of Position Constraint I are shown in Figure 3.12.
The outside point o, is computed by displacing the position point pos,,.(a) by one

!

' (@), namely

of the two vectors perpendicular to pos

! ! !

[posscr;/(a)7 _passcm:(a)]T or [_passcry(a)vpOSscrm(a)]T (315)

which has been normalized and scaled by the screen-projected radius cyro;rad(a)/pos,(a).

To determine which of the two perpendicular vectors points toward the outside of the

"

" .(a), recognizing that the second

paintstroke’s curvature, we apply a test based on pos
derivative vector always points toward the centre of curvature. The same algorithm
is applied to obtain 0,.” Once the outside points have been determined, it is trivial
to compute d?, the square of the distance between them. We use this value to derive
c0S? Oppaz, as per the equation

pe

2
cos® Oppow = ————
d? + tol}

(3.16)

Figure 3.13 provides a geometric interpretation for 6,,,, as a function of d and toly.

The effect of this function is to enforce a strict angular tolerance for long segments

Because we normalize the derivative vectors, we can omit the multiplications by ¢p0; in Equation
3.14. This yields the vector pos},, (t)/cpro; instead of posl,,.(t), but the two are equal when normalized.
" Although the first segment requires computing both o, and oy, subsequent segments reuse the second

point from the previous segment, so that only one outside point per segment needs to be computed.

3.2. TESSELLATING THE PAINTSTROKE 39

toly

emax

Figure 3.13: Geometric interpretation of 6,4, .

(a) (b)

Figure 3.14: Thickness distortion resulting from inadequate lengthwise subdivision.

(where d is large), but to relax the tolerance for short ones. As a result, the lengthwise
subdivision granularity adapts to the screen-projected length of the paintstroke segment,
and it does so in a manner that can be modified by tuning the parameter tol.

Finally, the test that decides whether this constraint causes a subdivision is the

following, with a false value triggering the subdivision:
cos? 0 > cos? 0,00 (3.17)

Given that 6 ¢[0° 90, the above relation is equivalent to the more intuitive (but also
more expensive) test condition, 0 < 6,,4,.

Aside from the obvious purpose of maintaining a smooth silhouette for a paintstroke
segment, Position Constraint I also keeps the segment’s thickness from being distorted
by sharp bends in its screen-projected path. Segments with even a slight eye-space
curvature will, from certain viewing angles, exhibit a sharp curvature in their screen-space
projection. This is an important consideration because any segment with greatly differing
endpoint tangents appears significantly thinner than the curved tube it represents. An

example of this phenomenon is given in Figure 3.14.

40 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE
Position Constraint II

The second position constraint maintains a desired degree of linearity in the z-component
of pos(t). This is necessary to ensure that a curved segment is adequately subdivided
even when viewed from an angle that makes its screen projection close to linear. In such
a situation, Position Constraint I would allow the entire segment to be rendered without
any subdivision, regardless of its true (i. e. eye-space) curvature. Although the rendered
image would have the correct shape, it would fail to express the true variation in the
surface normals along the segment.

To implement this constraint, we begin by computing over the interval [a, b] the exact
average values of pos,(t) and its linear interpolant ;=2 [pos,(b) — pos,(a)] + pos,(a). The
absolute difference between the two is a measure of pos,(t)’s nonlinearity. This value is
then scaled by %, a factor representing the foreshortening effect of the perspective
transformation at pos(a), given the projection distance dp,; (shown in Figure 3.4).%
Finally, the perspective-adjusted nonlinearity measure is bounded by the parameter tol,,
specified by the user. The formula for this constraint simplifies to the following:

dproj | 1 [b
% ‘b— / pos,(t) dt — pos,(a) —2|—posz() < tol, (3.18)
pos,(a) |b—a J,

where the integral is easily obtained from the precomputed coefficients of the (quartic)

antiderivative to pos,(t).

T a b

Figure 3.15: Geometric interpretation of f; pos,(t) dt — "%[pos,(a) + pos,(b)].

8 Applying the perspective factor for pos(a) to the entire interval [a,b] is a reasonable simplification
because, at the screen-projected size that paintstrokes are intended for, the perspective effect should be
very similar at both endpoints of a segment.

3.2. TESSELLATING THE PAINTSTROKE 41

The shaded region in Figure 3.15 represents the raw difference between the integrals
of pos,(t) and its linear interpolant over the region [a, b]. We will discuss shortly how to
cope with an inflection point in the interval. To obtain the measure of nonlinearity (prior
to the perspective adjustment) we must divide this raw difference by b — a. We do this
to essentially normalize the interval [a, b], whose length does not consistently correspond
to the length of the paintstroke segment.” Contrary to our initial intuition, this does
not counteract the view-adaptive nature of this constraint, since enlarging a paintstroke
(by uniformly scaling its control points) would have no effect on the parametric distance
b — a. Thus the normalization of this interval only serves to treat segments of different
physical lengths “equally”, by not biasing the nonlinearity measure with a high value for
large parametric intervals that may correspond to small physical distances. Note that
the perspective-adjusted nomnlinearity measure is sensitive both to true enlargement of
the paintstroke and to the perspective-induced enlargement of its screen projection as it

approaches the viewer.

The Radius Constraint

The radius constraint ensures a smooth lengthwise variation in the radius of a segment.
It is precisely analogous to Position Constraint II, relying on the perspective-adjusted
average difference between the rad(t) function and its linear interpolant. The simplified

equation for this constraint is

Ao 1 b d d(b
s ‘b_a / rad(t) dt — " (“)‘2“"“ O < 1o,y (3.19)

Inflection Point Constraints

Simple Inflection Points Position Constraint II and the Radius Constraint both re-
quire that the spline interpolants to which they apply have monotonic derivatives with
respect to parameter ¢ over the entire segment ¢ € [a, b]. In order to satisfy this condition,

we must ensure that pos,(t) and rad(t) have no inflection points in the open interval

9Tf this is not clear, consider a paintstroke with three control points, the first two close together and
the third one far away. The parametric distances between the first two and last two control points are
the same: one.

42 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

te(a,b). This is both necessary and sufficient to satisfy the condition. Since the in-
terpolants are cubics, finding an inflection point within a segment—there can only be
one—amounts to finding the the zero of the interpolant’s second derivative within the
interval (a,b). If one is found, a subdivision is carried out at the value of ¢ where it
occurs, producing a pair of subsegments which do not contain the inflection point in
their open intervals. The purpose of the foregoing requirement is exemplified in Fig-
ure 3.16(a), which shows how a function with a non-monotonic derivatives can confound
the average-value constraints. The average value of the function, based on its (signed) in-
tegral, is close to that of its linear interpolant—yet, clearly, the function is far from being
linear. By forcing a subdivision at the inflection point, we create two subsegments whose

derivatives are monotonic within their respective intervals, thus removing the anomaly.

(a) Simple (b) Projected

Figure 3.16: A function with non-monotonic derivatives.

Projected Inflection Points Another type of inflection point that may arise is one
within the screen-projected path of a segment. As can be seen in Figure 3.16(b), this
can cause a nonlinear path segment to have equal tangents at the endpoints, thereby
erroneously satisfying Position Constraint [. Precisely locating this type of inflection
point is quite expensive, given the nonlinearity of the perspective projection and the
resulting complexity of the projected curve. However, if we approximate the perspective
projection with a simple orthonormal one (i.e. we discard the z-component), the curve
becomes more tractable. This simplification provides a much faster means of detecting
and locating the approximate inflection points, and is very accurate at the relatively

small scales that paintstrokes are suited to.

3.2. TESSELLATING THE PAINTSTROKE 43

Abbreviating the segment’s eye-space positional components pos,(t) and pos,(t) to

x(t) and y(t), we find the values of ¢ that make either % or ©% equal to zero. We reason

dz? dy?
as follows:
@ = @ﬁ (3.20)
dx dt dx '
dy
= & (3.21)
dt
Pyde _ d’xd
dx? da\3 '
(%)
Similarly,
Prdy dPyd
o _ gl s
dy? dy\3 (3.23)
()
Setting either ji—g or 327;” to zero yields the same quadratic in terms of the polynomial co-

efficients for z(¢) and y(t). Note that although one of these derivatives may be undefined
due to a vanishing denominator, they can never both be undefined. That is because the
values of z—f and % cannot both vanish at the same point, unless a pair of consecutive
control points are identical in position—an illegal condition that, if present, is eliminated

when the control points are read in. Given that

o(t) = x3t® + zot” + 31t + 20 (3.24)

y(t) = yst’ +at® + it + yo (3.25)
the inflection points are obtained from the zeros of the quadratic
I(t) = 3(w2ys — x3y2)t” + 3(v1y3 — T3y1)t + T1Y2 — Tay (3.26)

If I(t) has distinct zeros, either (or both) of them lying in the interval [0, 1] are inflection
points. If the two zeros are identical, they are not inflection points, since they do not
represent a sign change in % (or in 227%).

Because solving the roots of I(t) is fairly expensive operation, our algorithm avoids
doing so wherever possible. For example, when the coefficient of #* in I(t) is several
orders of magnitude smaller in absolute value than the coefficient of ¢, we ignore the

quadratic term, approximating I(¢) with the resulting linear equation. If I(¢) cannot be

44 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

simplified in this way, we evaluate 1(0), I(1), and, if necessary, m and I(m), where m is
the (easily obtained) value of ¢ that yields an extremum. Based on these values we can
determine whether any roots fall within [0, 1], without explicitly solving them. If they
do—which is sufficiently rare in practice to make the above tests worthwhile—then we

solve for them.

3.2.3 Breadthwise Subdivision

After a segment has been sufficiently shortened by lengthwise subdivision, it is finally tes-
sellated into polygons along its breadth. This involves dividing it into a ring of polygons
which tile the truncated cone that the segment represents. The tessellation is view-
dependent—the divisions occur relative to the centre and edges of the segment, as they
appear to the viewer. Although the polygons are ultimately rendered using a perspective
projection, the method used to tessellate them assumes an orthographic projection. The
inaccuracy of this assumption is negligible at the paintstroke’s intended range of scales.
Moreover, this inaccuracy is visually much less significant (and is independent of) the

shading and cross-sectional inaccuracies discussed below.

The specifics of a paintstroke’s breadthwise tessellation depend on its quality level.
Each paintstroke bears one of three possible quality levels, numbered 0, 1, and 2. This
quantity is determined at an early preprocessing stage (indicated in Figure 3.11), based
on several user-defined parameters discussed below. As shown in Figure 3.17, the number
of each quality level represents log, /N, where IV is the number of polygons tiling the side
of the segment that is closest to the viewer. Hence, a quality-zero segment is tessellated
into a single polygon that always faces the viewer, a quality-one segment into two on each
side (the viewer’s side and the one opposite to it), and a quality-two segment into four
on each side. For quality-one and quality-two paintstrokes, the side opposite the viewer
is often hidden and can thus be safely ignored, saving considerable rendering time. This

important optimization will be discussed shortly.

3.2. TESSELLATING THE PAINTSTROKE 45

993

OO

Original Quality 0 Qualityl Quality 2

Figure 3.17: Breadthwise tessellation schemes for the three levels of quality.

AN

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 3.18: Paintstrokes generated at the three rendering quality levels.

Rendering Quality

A paintstroke’s quality level can be set to vary according to its maximum screen-space
thickness. This feature is generally useful, although transitions in quality level are not
always seamless (as are the changes in the paintstroke’s polygonization from scene to
scene within a given level of quality). For this reason, all segments of a paintstroke
share the same quality level. As the following descriptions indicate, higher quality levels
yield higher image quality. We have made no attempt to quantify this image quality,
since it really depends on a number of factors, including the paintstroke’s orientation
and reflectance, the lighting, and the user’s need for a precise (as opposed to imprecise

but consistent) image.

46 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

Quality Level 0 The tessellation of quality-zero segments is the simplest: the entire
segment becomes a single quadrilateral with vertices along the edges of the paintstroke,
corresponding to the silhouette of the generalized cylinder. This scheme yields the small-
est number of polygons, and the greatest savings over a general-purpose tessellation
method. However, it also yields the poorest rendering quality in several regards: (1) The
shading is inaccurate, being based on the linear interpolation of high curvature over a sin-
gle polygon. (2) A quality-zero segment disappears when viewed head-on, i.e. when the
tangent of its path, pos’(t), is collinear with the view vector. (3) The self-occlusion effect
accompanying high screen-space curvature—seen as a fold in the surface—is inaccurate.
(4) Paintstrokes of this quality level do not support breadthwise opacity variation, as
this feature requires a minimum of two polygons along the breadth of the paintstroke.
Despite their limitations, quality-zero paintstrokes are still very useful at a small scale,

where the above deficiencies are largely irrelevant.

Quality Level 1 At this level, the viewer’s side of the segment is divided into two
equal-sized quadrilaterals that have a common edge along the middle of the segment.
The same is done, if necessary, with the opposite side. Interpolating normals across
two polygons rather than one greatly improves the appearance of a shaded segment,
because of a more accurate normal distribution, and also improves the screen-space fold
at high curvature. Furthermore, paintstrokes of this quality level no longer disappear
when viewed head-on, although they may reveal their quadrilateral cross-section if their

path is sufficiently straight.

Quality Level 2 Quality-two paintstrokes produce the highest quality images, both
in their shading and in their appearance when viewed head-on. However, because they
generate four polygons per segment, their savings over a general tessellation scheme are
less pronounced. They are best suited to rendering at larger scales, where high image

quality is essential.

3.2. TESSELLATING THE PAINTSTROKE 47

Eliminating the Segment’s Hidden Side

On the side of a segment facing the viewer, breadthwise subdivision generates a semi-ring
of 1, 2, or 4 vertices around each endpoint, depending on the level of quality used. If both
sides of a segment may be visible, then a full ring of 2, 4, or 8 vertices is generated'?, and
any backfacing polygons are removed through faceculling at a later stage. Whether the
full ring is visible to the viewer depends on two criteria: the orientation of the segment
relative to the view vector, and behaviour of the radius derivative. Figure 3.19 provides
a geometric intuition for this dependency. For a given segment ps(t),te€|a,b], the full

ring is generated if and only if the following condition holds at t = a and t = b

&,(t) - view rad ol ..
<||pOS’(t)|| (t)> d'(t) > t0lring (3.27)

Q@ <X

(a) Only one side visible (b) Both sides visible

Figure 3.19: Paintstroke orientation and radius derivative determine side visibility.

The nonnegative constant tol,;,, can be tuned to achieve a desired level of strictness
in eliminating a partially hidden side. For example, if tol,;,, = 0, then the full ring of
polygons will be used whenever there is any variation in the radius and the segment’s
path is not perfectly orthogonal to the view vector—that is, whenever the opposite side is
at all visible, even if the the resulting image is so similar as to be indistinguishable from
one created with just the semi-ring. Positive values for tol,;,, will cause the semi-ring to
be used in place of the full ring when the side opposite the viewer is visible. We have

found that tol,;,, ~ 2 works well in practice. This value causes semi-rings to be used in

0The vertices along the edges are shared by both sides; this is why their number does not double.

48 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

place of full rings only when the half of the of the paintstroke further from the viewer is
just barely visible. Thus it minimizes the polygon count without noticeably degrading

the image.

(a) tOlm'ng =2 (b) tOlm'ng =20

Figure 3.20: A paintstroke rendered using two values for tol,,q, one reasonable and the
other excessive.

Determining the Polygon Vertices

To obtain a paintstroke polygon’s vertices, we first determine their displacements from
a point on the central path of the segment. These displacements are view-dependent
vectors which all originate at pos(t), radiating outward as shown in Figure 3.21. We
refer to them as the out vectors: out,q.(¢) points to one of the segment’s two lengthwise
silhouette edges, while outense(t) reaches the breadthwise centre of the segment. The
other two vectors, out,,;q, (t) and out,,q, () are linear combinations of out,q(t) and
OUt cnire(t) that point to the angular midpoint between the centre and each edge. The

full set of out vectors is depicted in Figure 3.22.

Figure 3.21: The view-dependent out vectors along the centre and edge of a segment.

view(t) x pos'(t)
[view(t) x pos’(t)]|

outgee(t) = rad(t) (3.28)

3.2. TESSELLATING THE PAINTSTROKE 49

OUt qe(t)
outmidl(t) -out ; dz(t)

image plane

Figure 3.22: The complete set of out vectors relative to the given viewing direction.

out,qee(t) x pos’(t)

out enie(t) = rad(t 3.29

D) =0t e 0) % oS (D] (3.29)
1 1

out,iq, (t) = E OUt enire(t) + E out,qge(t) (3.30)
1 1

out, g, () = 7 OUt enire(t) — 7 outgge (1) (3.31)

Vertices along the edges are now computed as pos(t) + outegqe(t) and pos(t) —
out,gee(t). For quality-zero paintstrokes, these are the only vertices used. For higher
quality levels, the centre vertex on the side of the segment facing the viewer is given by
pos(t) + outeenie(t), and the one one on the opposite side by pos(t) — out enire(t). For
quality-two paintstrokes, the remaining four vertices are computed in the same manner,
although the position of the vertices relative to the edges is inverted on the side opposite
the viewer (i.e. if pos(t) + out,,;q, () is between the centre of the viewer’s side and one
edge, then pos(t) — out,,;q4, (t) is between the centre of the opposite side and the other
edge). The vertices are computed at both endpoints of the segment, yielding a ring (or

semi-ring, if only the viewer’s side is visible) of quadrilaterals.

3.2.4 Computing the Normals

Vertex normals for paintstroke polygons are readily obtained from the out vectors dis-

11

cussed in the previous section.” In fact, if a segment has no variation in radius, the

1 As with the vertex positions, this determination is based on an orthographic projection.

50 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

out vector corresponding to a given vertex ¢s the normal for that vertex. In the general
case, each normal vector is equal to its corresponding out(t) vector plus an adjustment
vector adj(t) in the direction of pos’(¢), whose norm is determined by the derivatives of
the radius and position. The out vectors define the breadthwise normal variation of a
paintstroke (which is equivalent to that of a plain cylinder), while the adj vector repre-
sents the lengthwise normal variation, determined by the behaviour of the paintstroke’s
radius.

o rad'(t) o’
adj(t) = —||pos’(t)||2p (1) (3.32)

Assuming that the vector out has been normalized, we can justify this formula by
considering the truncated cone in Figure 3.23 and reasoning as follows. Note that the

vector out can represent any one of the out vectors of a paintstroke, since they are all

orthogonal to the path pos’(t), represented by Apos.

ladj]| Arad
_ (3.33)
lout|] |Apos|
Arad
dji|| = —— 3.34
ladill = piie (3.34)
Apos
adj = |ladj|| —— 3.35
Jadi| T 3oen (3.35)
~ Arad Apos (3.36)
|Apos|| [[Apos|| '
A
— Arad —P22_ (3.37)
|Apos||
!/
lim adj(t) = md’(t)&(t)z (3.38)
b=a=0 [pos’(2) ||

Breadthwise Distribution of Normals

In projective rendering, the normals in the interior of a polygon are usually derived by
bilinearly interpolating each component of the normals across the polygon’s screen-space

projection. This is the case with our polygon renderer.'? A result of this bilinear inter-

12As we shall see in §4.3, our interpolation scheme is not an exact bilinear interpolation, but an
approximation to it. For the purpose of this discussion, however, we can ignore this detail.

3.2. TESSELLATING THE PAINTSTROKE 51

adj
A >
out) normal
rad,
Arad
rad, A 1]

pos, Apos pos,

Figure 3.23: A cross-sectional view of a truncated cone.

polation is that the rate of change (of direction) of an interpolated normal with respect
to interpolation distance is smallest at the edges and greatest somewhere in the interior
of a polygon. However, as Figure 3.24 illustrates, this is a very poor approximation of a
generalized cylinder’s breadthwise normal distribution. When a large amount of curva-
ture is interpolated over a single polygon, the resulting image appears to have a ridge at
the centre (see Figure 3.18) because the normals at that point are varying most rapidly
instead of least rapidly, as they should for a true generalized cylinder. As one would ex-
pect, the more polygons are used to express a paintstroke’s breadthwise normal variation,
the better the approximation becomes. It is for this reason that shaded paintstrokes of
higher quality levels have a rounder appearance than those of lower ones.

Any distribution of normals can be associated with a surface whose normals form
the same distribution. The surface corresponding to a generalized cylinder’s breadth-
wise normal distribution is a circular extrusion, or a cylinder. In contrast, the breadth-
wise normal distribution produced by interpolating over a single paintstroke polygon is
that of a parabolic extrusion—a nontrivial fact, though easily justified. Referring to
Figure 3.24(b), which represents a cross-sectional view of the polygon with the z-axis
denoting the direction of interpolation and the y-axis the central normal vector, we rea-

son as follows: the normal at any value of = has slope a/x where a > 0 represents the

52 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

nudge factor, a value that determines the range of the normals to be interpolated. Thus,
the tangent of the curve f(x) whose normal at point z is a/z must be —z/a, yielding

the equations

fl@) = —2 (3.39)
flz) = —;—2+c (3.40)

N

) S\ 27 y=a
) ©0) "X ©0) X
y y
(a) Cylinder (b) Polygon

Figure 3.24: Breadthwise distributions of normals for a true cylinder and a linearly
interpolated polygonal representation.

Nudge Factors

For segments of quality zero, the normals along the lengthwise edges of a polygon are
artificially nudged toward the normals of the centre vertices (even though the latter do not
appear in a quality-zero segment). This is needed because the true edge normals are co-
planar, so the subsequent interpolation between the edges would never have the (required)
perpendicular component in the central direction—at the middle of the polygon, the
normal would simply vanish instead of pointing orthogonally to the edges. The amount
by which the edge normals are shifted toward the centre normal, specified by the nudge
factor, determines both the range and distribution of the normals. A large nudge factor
produces a smaller range but improves the the cylindrical appearance of the distribution
by reducing the height of the parabola whose shape it approximates. As the nudge factor

approaches zero, the derivative of the normal’s direction with respect to interpolation

3.2. TESSELLATING THE PAINTSTROKE 53

distance approaches infinity, causing severe spatial aliasing in the shading model.'> A
well-chosen value for the nudge factor produces a reasonable range of normals that do

not vary too quickly at the centre, and are thus not prone to this type of aliasing.

N

<~ %HV

Figure 3.25: Normals interpolated using a small (bottom) and a larger (top) nudge factor.

For paintstrokes of quality level one or two, no explicit nudge factors are used, since
they are already implied by the 90° (for quality one) or 45° (for quality two) of breadthwise
normal variation across each polygon. The greatest difference in normal distributions is
between levels zero and one. Accordingly, paintstrokes that automatically adjust their
level of quality to their screen-projected size can produce popping artifacts when making
a transition between these two levels. Transitions between levels one and two, while
perceptible, are far less conspicuous. Naturally, the smoothness of any quality level
transition also depends on the paintstroke’s reflectance and its orientation relative to the

light source and the viewer.

(a) Quality 0, with (b) Quality 1 (c) Quality 2
three nudge factors

Figure 3.26: Breadthwise normal distributions and their implied surface shapes for paint-
strokes.

130f course, the same type of aliasing will occur with a true cylinder, whose normals along the edges
vary rapidly with respect to interpolation distance.

54 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

3.2.5 Endcap Generation

A paintstroke of quality one or two can be terminated at either end with an endcap,
provided that the radius is greater than zero. This feature is made optional by classifying
paintstrokes as either open (without endcaps) or closed (with endcaps), and allowing the
model to specify the type of paintstroke used. The construction of the endcaps for
quality-one and quality-two paintstrokes is shown in Figure 3.27. The essentially flat
geometry of quality-zero paintstrokes precludes (and eliminates the need for) endcaps.
A triangle fan is used for the endcaps in order to allow the central point to assume a
normal parallel to the paintstroke’s tangent vector pos’(t). A improved implementation

for generating smoother endcaps at large sizes is outlined in Chapter 5.

Seodo--
L 3
s<do--

(a) Quality 1 (b) Quality 2

Figure 3.27: Endcap construction.

3.2.6 Problems with High Screen Curvature

It is the modeller’s responsibility to ensure that the radius of a paintstroke does not exceed
its radius of curvature in world-space (or equivalently, in eye-space). But even a well-
behaved paintstroke that satisfies this requirement may, when transformed into screen-

space, have a projected (z,y)-path whose radius of curvature is easily exceeded by the

Figure 3.28: A paintstroke with high screen-projected curvature.

3.2. TESSELLATING THE PAINTSTROKE %)

paintstroke’s projected radius. This occurs when the direction of a curved paintstroke’s

path approaches that of the view vector, as exemplified in Figure 3.28.

This situation can give rise both to concave and complex (specifically, bowtie) poly-
gons at all three quality levels. The latter are caused by the intersection of edges along
the endpoints of a segment, and the former can occur when these edges do not quite
intersect, but their endpoints are close. Since most polygon rendering algorithms, in-
cluding ours, work only with simple convex polygons, these degenerate polygons pose a

problem.

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 3.29: Tessellation meshes producing bowtie polygons at all three levels of rendering
quality for a paintstroke of sharp screen-space curvature.

Our implementation solves the problem in the traditional way, by splitting the of-
fending polygon into an equivalent pair of triangles. As Figure 3.30 illustrates, splitting
bowtie polygons can result in T-junctions, which many rendering systems cannot reliably
handle [NDW93|. Hardware-based rendering engines typically use fixed-point arithmetic
which may fail to represent the point in the middle of the T-junction as lying on the line
joining the two points on either side of it. This can result in cracks intermittently open-
ing up in the junction. In contrast, our polygon renderer handles T-junctions without
difficulty because it represents vertex positions as double-precision floating-point values,

rather than using the less accurate fixed-point representation.

56 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

T-junction

Figure 3.30: T-junction produced by splitting a bowtie polygon.

3.3 Special Rendering Effects
3.3.1 Lengthwise Opacity Variation

As mentioned in §3.1.4, the lengthwise opacity of a paintstroke segment varies according
to the values of op,,;, (t) and op,,,,(t). The latter opacity is applied when the segment is
viewed head-on, whereas the former is used when it is viewed orthogonally to its path.
For intermediate cases, an opacity value is interpolated between these extremes, based

on the dot product of the normalized tangent vector and the view vector.

t

pos() [\
Tpos (0] D Prin)
(3.41)

. . pOS, t . pos’
opacity,(t) = |view(t) - m view(t)

opar(®)+ (1

By exploiting this opacity interpolation, it is possible to simulate volume opacity,
which varies according to the distance that penetrating light rays travel through a mate-
rial. However, since we are basing the opacity on just a tangent vector, rather than any
measure of distance, this effect is only a crude approximation, whose accuracy could be
arbitrarily wrong. Nevertheless, the effect produces good results in practice, and is far

less expensive than computing true volume opacity.

In order to quantify the accuracy of our opacity interpolation in a typical example,
we have computed the true volume opacity of the bent tube shown in Figure 3.32. The

light penetration distance d is determined by the constants r; = 10, r, = 11, L = 10,

3.3. SPECIAL RENDERING EFFECTS 57

(a) The geometry behind our ap- (b) The result
proximation

Figure 3.31: Lengthwise opacity variation simulating volume opacity.

Figure 3.32: Tube used in the opacity comparison.

and by the parameter 6 €[0°, 45°]. We compute the true opacity using the formula
opacity =1 — e 74 (3.42)

where p represents the material density, which is assumed constant over the tube. We
ran the comparison several times, using different values for p.

We have constructed this comparison so that the interpolant endpoints op,,;, (t) and
OPynas (t) are set to the true minimum and maximum opacity values (computed using

Equation 3.42), which occur at § = 0° and 0 = 45°. As the results in Figure 3.33

58 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

=—Exact ==<Interpolated —Exact ==<Interpolated
1.00 1.0
0.85 0.9
> >
= 070 = 08
8 8
Q Q
o o
0.55 0.7
0.40 0.6 ' ' :
0° 15° 30° 45° 0° 15° 30° 45°
0 0
(a) p=10.5 (b) p=1.0
=——Exact ==-<Interpolated =——Exact ==-<Interpolated
1.00 1.000
0.995
0.95
2 2
= £ 0.990
@ @
o o
© 0.90- o
0.985
0.85 ! ! . 0.980 ! ! .
0° 15° 30° 45° 0° 15° 30° 45°
0 0
(c) p=20 (d) p=4.0

Figure 3.33: Exact vs. interpolated opacity values for 6 ¢ [0°, 45°].

illustrate, our approximation works best for fairly high values of p, at which the opacity
becomes insensitive to the relatively long penetration distances introduced by L (since

penetration distance is not captured by our interpolation model).

3.3. SPECIAL RENDERING EFFECTS 59

3.3.2 Breadthwise Opacity Variation

The surface normals spanning the breadth of a paintstroke provide a simple and useful
way of modulating the opacity across its breadth. This effect is achieved in each ring
of polygons comprising a paintstroke segment by storing a dot product of the normal
at each front-facing vertex with view vector. All the dot products within the segment
are then divided by the maximum dot product, which occurs at the centre vertex. The
quotient is stored for each vertex v; as the parameter s;. Given the vertex normal N;,

the equations for s; and for the final opacity, o;, are

N, - vi
i m — Noview (3.43)
max; (N, - view)
0; = (1 - Si)opedge + 56 ODcentre (344)

This value is multiplied by the lengthwise opacity value from the previous section, to

yield an overall opacity at each vertex.

0

Figure 3.34: Implementation of breadthwise opacity variation.

A simpler way to implement this type of opacity variation would be to assign each
vertex a fixed value for o;, based on the position of the vertex along the width of the
paintstroke. Thus, for a quality-one paintstroke, the vertex at the centre would have a
value of one, and the vertices along the edges would have values of zero. Although this
approach seems initially appealing because it is simple and inexpensive, it breaks down
when a full ring of polygons becomes visible, as in Figure 3.20. In this case, the vertices

along the top and bottom of the tapered segment (corresponding to the “edge” polygons,

60 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

though, from this angle, they are nowhere near the edges) would have an opacity value
of 0p,q4 Wwhile vertices along the left and right would have opacity values of op .,y e-
Our solution guarantees that the opacity will depend on the angle of the surface normal
relative to the viewer, eliminating this anomaly.

Breadthwise opacity variation can be used to produce fuzzy paintstrokes (by using
a high value for op,.,,. and a low value for op,g,.) or to simulate the Fresnel effect
for streams of water or icicles (by doing the reverse). Applications for the former in-
clude modelling wisps of hair or blobs of smoke. An example of the latter is shown in

Figure 3.36.

Figure 3.35: Two types of breadthwise opacity variation.

3.3.3 Global Shading Algorithm

The surface normals derived in §3.2.4 enable us to apply accurate local shading to each
individual paintstroke. However, they fail to take into account the shadows that paint-
strokes can cast onto themselves and other paintstrokes. While this problem could be
rectified by explicitly computing shadows for all paintstrokes, as with shadow buffering
[Wil78], this approach would significantly increase rendering time and memory require-
ments. Our solution, while not as general as true shadow calculation, produces good

results for homogeneous layers of paintstrokes covering a roughly convex shape. It is

3.3. SPECIAL RENDERING EFFECTS 61

Figure 3.36: Breadthwise opacity variation used to simulate the Fresnel effect in a stream
of water.

similar in spirit to the one proposed by Reeves and Blau [RBS85].

Each control point of a paintstroke has associated with it a global normal Ny and
a global depth value dg;, as shown in Figure 3.37. The former indicates the direction of
the global surface to which the control point belongs, and the latter the relative depth
from that surface, expressed as a value between zero (on the surface) and one (maximally
distant from the surface). Note that this is unrelated to the true position of the control
point—this model is based only on the global normal and depth value. The global normal
value is entered by the user in world-space and is automatically transformed into eye-
space (as is the position vector) when a paintstroke is rendered. The depth values are

constant.

Figure 3.37: Global normals and depth values assigned to the control points of a paint-
stroke.

At any control point, the estimated amount of light penetration, p, relative to a light

62 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

direction L is given by the following equation (all vectors normalized):

=0 a a0 Ny TP - (4 I Ny (349

This penetration value, ranging between zero and one, has a specific geometric in-
terpretation. As illustrated in Figure 3.38, we construct a unit sphere centred at the
origin. The position of the control point in this model is defined to be (1 —dg)Ny, which
always lies within the sphere. Now we extend a line segment in the direction of the light
vector L, joining some point on the surface of the sphere to the control point within. The
length of this line segment represents the penetration value at the control point. Since

the length could vary from 0 to 2, we multiply it by % in order to normalize it.

Figure 3.38: Penetration values at various light angles for a given global normal and
depth.

When the penetration at a given control point cp; is determined, the reflectance
vector r; for that control point is scaled down according to a negative exponential function

involving its penetration value p; and a user-defined material density factor p.

r:=r;e "’ (3.46)

3.4. SUMMARY 63

This global shading model works well when a large number of control points are
uniformly distributed over a convex volume. This is usually the case with fur and foliage,

so this method is particularly useful in modelling these.

Figure 3.39: Example of a global shading effect.

3.4 Summary

In this chapter we have discussed three important aspects of the paintstroke primitive: its
representation, its tessellation, and the unique rendering features that are made possible
by the above. We have also examined some of the strengths and limitations of the

different quality levels of paintstrokes, a topic that will be revisited in Chapter 5.

64 CHAPTER 3. THE PAINTSTROKE: A GENERALIZED CYLINDER PRIMITIVE

Chapter 4

Rendering Polygons Using the
A-Buffer

In the preceding chapter, we have examined the overall structure of paintstrokes, and
how they are tessellated into polygons. This chapter explains how our rendering engine
converts these and other polygons into screen images. Unless otherwise noted, all poly-
gons discussed in this chapter are of the simple and convex variety—an assumption that
greatly simplifies the task of rendering them and sets the stage for a number of significant
algorithmic optimizations. As we have seen in Chapter 3, complex or concave polygons
can always be decomposed into simple convex ones, so they can still be rendered, albeit

with some extra work.

4.1 Overview of the A-Buffer

The A-Buffer is a framework that provides an efficient way to represent and composite
rasterized images with subpixel accuracy. It accomplishes this through a mechanism
that appropriately blends their colour and opacity values according to subpixel coverage,
effectively applying a box filter over each pixel. This filtering provides fast, high-quality
antialiasing of the resulting image. In a typical projective-rendering graphics pipeline, the
A-Buffer’s scope lies within the last stage of the screen-space phase, where rasterization
occurs.

In the A-Buffer framework, polygons are rendered in two stages: first they are raster-
ized into a set of fragments—simplified subpixel resolution images, each covering a single

pixel. A more rigorous definition of fragments will be presented shortly. Once all the

65

66 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

polygons have been rasterized, the fragments over each pixel are blended, or composited,
to generate a final colour value that is assigned to that pixel. Thus, polygons are not
completely rendered one at a time, as they are with most other renderers; they all have
to be rasterized before a single pixel can be drawn to the screen.! As mentioned, the A-
Buffer performs spatial antialiasing by applying a pixel-sized box filter to each fragment.
Thus, each fragment is treated as an individual supersampled subpixel-resolution image
(filtered independently of the others) that contributes to the final colour of the pixel it
covers, and only that pixel.

There are numerous implementations of the A-Buffer in circulation. While most of
these are software-based, some have been designed to work in hardware [SS93], though
these are rarely found in practice. Ours is based on the original implementation by
Loren Carpenter [Car84], although it fundamentally differs in two aspects: the way that
fragments are generated, and the way that intersecting fragments are blended. Similar
work based on using bitmaps to approximate pixel coverage, as described by Fiume
and Fournier in [FFR83], predates the A-Buffer. Their approach, however, does not keep
track of multiple fragments per pixel, and as a result, blended pixels are dependent on the
order in which polygons are processed. Consequently, this solution provides less accurate
results for overlapping surfaces, and as presented cannot adequately handle transparency,
although it is faster and more memory-efficient than the A-Buffer.

Thus far we have referred to the A-Buffer only in the context of rendering polygons.
Although that is indeed its most common application, the A-Buffer can be used in imag-
ing a variety of non-polygonal primitives (e.g. lines, ovals, and even text) using different
methods of rasterization (e.g. scanline, ray-tracing, bilinear interpolation). This variety
of incarnations exists because the A-Buffer does not impose a particular rasterization
algorithm, but only specifies the format of the fragments it processes. Hence, any raster-
ization scheme can in principle be made to work within the framework of the A-Buffer.
In fact, more than one could be used for different sets of primitives within the same scene,

where the fragments are generated in different ways, but processed by a single A-Buffer

Tt is noteworthy that the A-Buffer blends each pixel’s fragments independently of the other pixels’.
Although our current implementation does not take advantage of it, this theoretically allows for very
efficient parallelization of the blending process.

4.2. FRAGMENTS 67

blending routine. In this chapter, however, we shall restrict our scope to simple convex

polygons, which serve as the basis of our rendering engine.

4.2 Fragments

Fragments are data structures that store a simplified representation of a polygon’s pro-
jected image over a particular pixel, rasterized at “quasi-subpixel” resolution, as defined
below. Each pixel is allocated zero or more fragments, one for each polygon whose inte-
rior contains any part of the pixel.? The fragments are stored in a list, ordered by the
the values of their Z,;, fields which represent their minimum (or closest) z-values.

Storing depth information for each pixel touched by a rasterized primitive is an ap-
proach that the A-Buffer shares with its predecessor, the Z-Buffer. Complementing this
similarity are two noteworthy differences: first, the A-Buffer’s fragments contain a great
deal more information than the simple depth values used in the Z-Buffer; and second, un-
like the Z-Buffer, which keeps only the foremost depth value at each pixel, the A-Buffer
stores fragments for all polygons, even those masked by closer ones. It is easy to see
from these differences that the A-Buffer consumes considerably more memory than the
Z-Buffer.

A minimal A-Buffer implementation such as ours represents the fragment’s data struc-

ture with the following fields:
1. The coverage mask, mask
2. The colour, colour
3. The opacity, opacity
4. The minimum and maximum screen-space z-values, Zy;, and Zg.,
5. The tag identifier, tag

Note that there is no information about surface normals stored in a fragment. That is

because the local shading model is incorporated in the rasterization routine, so that a

2More precisely, any centre of a subpixel within the pixel. We have more to say about subpixels in
§4.2.1.

68 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

fragment’s colour field contains the shaded colour, as determined by the desired local
illumination model.

We used the term “quasi-subpixel” to describe the resolution at which fragments
are rasterized. That is because the fragment’s supersampled image is simplified in the
following ways: (1) all the subpixels share the same colour and opacity values, and (2)
just the minimum and maximum z-values over the entire fragment are computed. Hence,

only the pixel’s coverage is stored at true subpixel resolution within the fragment.

4.2.1 The coverage mask field, mask

0123456738

O~NO UL WNPEFE O

screen-projected

subpixels polygon

Figure 4.1: A coverage mask produced by rasterizing a small polygon, with a superim-
posed grid indicating subpixel positions.

The field mask is a two-dimensional bitmap that stores a screen-projected polygon’s
subpixel-resolution image over a pixel. Each bit in the coverage mask is associated
with one subpixel, indicating whether the latter is covered. Subpixels are arranged in
a uniform rectangular grid spanning the pixel. The shape of each subpixel may or may
not match the shape of the pixel, depending on the subpixel resolution used. In [Car84],
Carpenter uses an 8 x 4 resolution, making his subpixels rectangular (assuming square
pixels). Our version employs a resolution of 8 x 8, which allows the bitmap to be stored in
a single 64-bit integer variable, the rows being packed in consecutive 8-bit intervals. This
permits an efficient implementation of set operations such as unions and intersections by
means of bitwise operations on registers. These operations, as we shall see shortly, are

essential to the fragment-blending portion of the algorithm. The amount of time spent

4.2. FRAGMENTS 69

generating fragments (and to a lesser extent, blending them) grows with the resolution of
the coverage mask, but so does the quality of the antialiasing, due to the greater precision

with which the coverage of a pixel can be approximated.

4.2.2 The tag identifier field, tag

This field is an optional identifier that may assigned to a fragment upon its creation.
Although our current implementation does not make use of the tag field, its traditional
role facilitates merging “compatible” fragments in order to free up memory, as described
in [Car84]. To qualify as compatible, a pair of fragments must belong to the same
pixel, be adjacent in depth, and come from polygons tiling a single surface. All the
polygons tessellated from this surface share an identifier that is placed in the tag field
of the fragments they generate, providing a simple and inexpensive test for merging

compatibility. Another potential application for the tag field will be described in §5.1.3.

4.2.3 The colour field, colour

The colour of a fragment is stored as a set of integer r,g,be[0,255] representing the
quantized red, green, and blue components. Because the field mask does not store any
colour information about subpixels®, the image it contains is monochrome—all the filled
subpixels share a single average colour value that is stored in the field colour. Allowing
only one colour per fragment greatly simplifies the blending formulas while still permitting
smooth colour variation across multiple pixels, since fragments are never bigger than a

single pixel.

4.2.4 The opacity field, opacity

The opacity of a fragment is a floating-point value between zero and one, with zero
corresponding to complete transparency (and therefore invisibility), and one to complete

opacity. As with colour, the value of opacity applies to all the subpixels of a fragment.

3In more colloquial usage, a bitmap is often said to store binary colour values. This is not strictly
true; it stores values that may represent two different colours, but the identity of those colours is not
explicitly encoded in the bitmap.

70 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

4.2.5 The minimum and maximum z-value fields, Z;;, and Z,.,

The fields Zp;, and Zg,, contain the minimum and maximum screen-space z-values of a
fragment, respectively. Unlike the Z-Buffer, which uses a single z-value, the A-Buffer
attempts to antialias intersecting fragments. Given a pair of such fragments, it needs to
determine what portion of each one is visible to the viewer. The Z,;, and Zg., values of

both fragments are used to estimate this, as described in §B.2.7.

4.3 Rasterization

Having examined the fragment’s structure in some detail, we now turn to the task of
generating fragments, which is performed by the rasterization algorithm. Our imple-
mentation rasterizes each polygon by linearly interpolating a vector of values over the
interior and producing a fragment at each pixel. The vector, called the interpolant vector,

consists of the following elements:
e screen-space position vector
e eye-space normal vector
e colour
e opacity
e kg, the diffuse shading coefficient
e k,, the specular shading coefficient*

We have developed two methods of interpolating this vector, bilinear interpolation and
constant-increment interpolation, ultimately incorporating the latter into our rendering

engine.

4.3.1 Bilinear vs. Constant-Increment Interpolation

Bilinear interpolation linearly scans the components of the interpolant vector along the

polygon’s left and right edges, starting at the top and proceeding downward. At each

4k, and kq are used in the shading model and will be explained in §4.3.6.

4.3. RASTERIZATION 71

vertical step during the scanning, a horizontal interpolation is made between the inter-
polated points along the edges, scanning the breadth of the polygon. By thus composing
the vertical interpolation with the horizontal, the full area of the polygon is scanned. An
efficient way to perform such interpolations is to compute an increment for the interpolant
vector corresponding to one horizontal or vertical step, and to apply the corresponding in-
crement at each step during the scanning. Computing the increment requires subtracting
the endpoint values and dividing by the (horizontal or vertical) distance between them.
Although quite simple, this computation—particularly for the horizontal increment—can
account for a significant portion of a polygon’s rendering time, because it is performed
at each subpixel row in the polygon.

Because the appropriate increment is re-computed for each row and for each pair of
vertices along the edges, bilinear interpolation is suitable for approximating a nonlinear
function from a set of samples. While this is a useful feature for many applications, a less
expensive method exists for strictly linear functions: constant-increment interpolation.
This technique is similar to bilinear interpolation, except that it applies constant horizon-
tal and vertical increments when scanning anywhere within the polygon. Except for the
x- and y- values (which are trivial to interpolate within the polygon), a plane equation
is constructed for each scalar subcomponent of the interpolant vector, using its value at
each vertex as a z-value for the plane, together with the vertex’s screen-space z- and y-
values. The plane equation is then used to compute the constant horizontal and vertical
increments to be used during the scanning, as outlined in the following section. This
represents a significant cost reduction over bilinear interpolation, which needs to recom-
pute the horizontal increment many times for each polygon. Moreover, the eliminated
recomputation is relatively expensive, involving one division and, for each component of

the interpolant vector, one subtraction, multiplication, and assignment operation.

4.3.2 Computing the Plane Equations

To obtain the plane equation for a given quantity we wish to interpolate over a polygon,
we construct a geometric analogue of the polygon by replacing the screen-space z-value

at each vertex with the interpolated quantity at that vertex. The normal of this new

72 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

polygon will provide the plane equation we seek. If the new vertices are coplanar, we
could use any pair of edges to determine the normal. However, recognizing that the
vertices may not all be coplanar, we compute an average normal direction by treating
the polygon as a fan of triangles joined at one of the vertices, as shown in Figure 4.2. The
choice of the common vertex is arbitrary, as will be evident from the ultimate formula
we derive. We add the (non-normalized) normal vector of each triangle, obtained by
the cross product of the two edges that share the common vertex, taken in a consistent

> The sum of the normals represents an average normal direction of the

cyclical order.
set of triangles comprising the original polygon, with each triangle’s contribution to the
normal weighted by its area. This weighting is borne in the magnitude of each normal,

and that is why we omit normalizing them.

Figure 4.2: Fan of triangles used in computing the average normal.

Given n 3-dimensional vertices, vg,vy,...,v,_1, we compute the sum of the cross

products, N, as follows:

N = (vi—vo)x (V2 — Vo) (4.1)
+ (Vo — vo) X (v3 — V) (4.2)

¥ (4.3)

+ (Vas — Vo) X (Va1 — Vo) (4.4)

= VI XVy — Vi X Vo —[vo X Vz] 4 vo X Vg (4.5)

5Note that any pair of edges in a triangle would yield the same cross product, provided their cyclical
ordering was the same, so our choice is legitimately arbitrary.

4.3. RASTERIZATION 73

| Cancelled terms| +Vy X V3 — ‘VQ X VO‘ — ‘vo X Vg‘ + vy X vy (4.6)
+v3><v4—‘Vngo‘—‘voxv4‘+voxv0 (4.7)

+... (4.8)

+ V9 X Vo — — Vo XV, 1 + Vo X vy (4.9)

= VI XVy — V] X Vg (4.10)

+ vy X V3 (4.11)

+v3 X vy (4.12)

¥ (4.13)

+Vp_o X Vel — Vo X V1 (4.14)

= VogXV] + Vi XVy+ ...+ Vi oX V1 + V1 X v4.15)

If we then represent each vector v; using its components x;, y;, z;, we can expand out

the cross products to yield the ultimate formulas used in computing N. Letting v,, equal

v5, we can write:

n—1

N, = (Vizig1 — 2iYit1) (4.16)
1=0
n—1

Ny = Z (Ziib'i+1 — xiziﬂ) (417)
1=0
n—1

N, = (TiYir1 — YiTiv1) (4.18)
1=0

These three normal components respectively correspond to the coefficients A, B, C
of the plane equation Ax + By + Cz + D = 0. The value |N,| also equals twice the
polygon’s area, a quantity we will make use of shortly. The coefficient D is obtained by
substituting the average (z,y, z) value of the vertices into the equation. The constant
increments for one unit (in our case, one subpixel) of horizontal or vertical movement are

then given by the expressions —A/C and —B/C| respectively.

6n allowing this, we observe that the subscripts form a ring of modulo n arithmetic, establishing the
arbitrariness of the starting vertex v as promised.

74 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

4.3.3 Problems with Nonplanar Polygons

Because it is assumes linearity in the function to be interpolated, constant-increment
interpolation has a potential shortcoming when applied to polygon scan-conversion: A
polygon that is nonplanar in any component of the interpolant vector will yield an in-
terpolant that fails to span the exact range of values spanned by the vertices. This
can produce a discontinuity along the shared edge of adjacent polygons, one of which is
nonplanar. In contrast, bilinear interpolation fully interpolates the vertex values across
even a nonplanar polygon, so that such discontinuities cannot occur. However, when
applied to such polygons, the results of bilinear interpolation become dependent on the
polygon’s orientation with respect to the scanning direction, as shown in Figure 4.3. This
presents a problem, because the direction of the horizontal scanning is fixed relative to
the viewport, and therefore varies relative to the polygon’s frame of reference. While
orientation-dependency is undesirable effect, it is much less noticeable than the edge

discontinuities arising from the constant-increment method.

0.5

0

Figure 4.3: Orientation-dependency of bilinear interpolation for a nonplanar polygon.

The easiest and probably most common way of dealing with nonplanar polygons is
to subdivide them into triangles, which are trivially planar in all interpolated quantities.
While this method does indeed remove the discontinuities of constant-increment inter-
polation and also the orientation-dependency of bilinear interpolation, it would negate
many of the savings afforded by tessellating paintstrokes into a small number of large

polygons.

4.3. RASTERIZATION 75

4.3.4 The Dynamic Triangulation Algorithm

Observing that the majority of polygons generated by our paintstroke tessellation scheme
did not manifest the artifacts caused by nonplanarity, we opted to use the more efficient
constant-increment method. Our experience has shown that for small polygons (under
8 pixels in area), discontinuities between adjacent polygons arising from nonplanarity
are virtually undetectable—not because they cease to exist, but because the eye cannot
discern them. To deal with larger polygons, we implement a dynamic triangulation
mechanism, which uses a planarity test to determine whether subdivision is necessary.
If it is, the polygon is subdivided into a fan of triangles, one per vertex. As Figure 4.4
illustrates, the triangles all share a new central vertex, which is obtained by averaging

the vertices of the original polygon.”

N

Figure 4.4: A polygon subdivided by the dynamic triangulation algorithm.

Because our constant-increment interpolation produces a least-squares linear solution,
the deviations of the vertices from the interpolant plane are a good measure of the former’s
planarity. The maximum absolute deviation among the vertices is multiplied by an ad
hoc linear function of the polygon’s area (one function per component). If the product
exceeds a given threshold, the polygon is triangulated.

The purpose of the area functions is to lower the triangulation threshold for larger
polygons, where the effects of nonplanarity are particularly conspicuous. Each function
is defined using a pair of values, ¢; and co, that specify the polygon areas for which

the function reaches its minimum, 0, and its maximum, 1. An example appears in

"Contrary to intuition, we do not re-normalize the normal vector of the averaged vertex, as this would
yield a noticeably different shading profile from the original polygon. Because we want the triangulated
polygons to blend seamlessly with the ones that are not triangulated, we must ensure that the normals
across both types behave similarly. Preserving the original (i.e. non-normalized) average normal at the
centre of the former type maintains this similarity.

76 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

triangulation threshold

G G
polygon area

Figure 4.5: An area function, as defined by ¢; and cs.

Figure 4.5. Using one such function per component allows us to vary the strictness of

the triangulation criterion for different components.

The advantage of our triangulation criterion is that it permits small polygons to be
rendered very quickly, unencumbered by needless triangulation. Assuming that paint-
strokes are used at a reasonably small scale, the vast majority of the polygons they
generate will pass below the triangulation threshold. As the size of a paintstroke in-
creases, more and more of its nonplanar polygons will become triangulated, gradually
degrading performance but maintaining the image quality. When the amount of triangu-
lation becomes high (e.g. 50% or more) it can be reduced by switching to a higher quality
level paintstroke, which reduces both the size and the nonplanarity of the paintstroke
polygons. In such a case, the switch provides a higher quality image, typically at only a
slightly higher polygon count (after triangulation). While this switch is normally done
automatically, it can be disabled by the user to eliminate potential popping artifacts that

are possible when a paintstroke changes quality levels.

Figure 4.6 shows small and large level-zero paintstrokes, rendered with and without
dynamic triangulation. In Figure 4.6(a), a total of 50 paintstroke polygons were gener-
ated. When dynamic triangulation was activated, 37 of them were triangulated (each
into 4 triangles), yielding a total of 161 polygons for Figure 4.6(c). The paintstroke in
Figure 4.6(e) consists of 20 polygons, which did not require triangulation, thus yielding

identical images with and without dynamic triangulation.

4.3. RASTERIZATION 77

(a) Large paintstroke without dynamic trian- (b) Close-up of the tail
gulation

(c) Large paintstroke with dynamic triangula- (d) Close-up of the tail
tion

(e) Small paintstroke with or without dynamic (f) Close-up of the tail
triangulation

Figure 4.6: Paintstrokes rendered with and without dynamic triangulation.

78 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

4.3.5 The Rasterization Algorithm

Operating at an 8 x 8 subpixel resolution, a naive algorithm would take about 64 times as
long to rasterize an image as it would at full pixel resolution. In such a case, the A-Buffer
would offer no speed advantage over rendering a scene at the higher resolution with a
Z-Buffer algorithm, and then filtering it down. Traditional A-Buffer implementations
do much better than this: they operate at pizel resolution, while still achieving subpixel
accuracy. The way this is done, as described in [FFR83, Car84], is by constructing a table
of pre-computed coverage masks, based on (and indexed by) all possible horizontal and
vertical edge intercepts within a pixel, expressed at subpixel resolution.® Whereas fully
covered pixels in the interior of the polygon are trivially dealt with, those along the edges
derive their coverage masks by appropriately combining the table entries corresponding

to the edge intercepts.

Even though a coverage mask constructed at pixel resolution, as described above,
retains subpixel accuracy, the same is not true of a fragment’s shaded colour. Applying
a single shading sample per pixel can produce severe aliasing artifacts at the small scales
paintstrokes are intended for. Since our goal is to provide high overall image quality,
and not just silhouette antialiasing, it is often necessary to compute the shading model
at finer than pixel resolution. Because of this, the rendering cost tends to be dominated
by the shading, with relatively little time devoted to constructing the coverage mask.
Consequently, we opted for a simpler solution in creating coverage masks than the one
described above. Although not as efficient, our approach is still far superior to a simple
high-resolution Z-Buffer with filtering, and also provides more accurate average values
for the other fragment components (such as colour and depth values) than the pixel-

resolution algorithm.

Our algorithm optimizes the rasterization of fragments that are either completely
covered or have entire rows of subpixels covered. As the example in Figure 4.3 suggests,
the vast majority of fragments will typically fit at least the latter profile, and a significant

number may also fit the former. As for those that fit neither, the rasterization is still

8Some table entries can be eliminated due to symmetry.

4.3. RASTERIZATION 79

much more efficient than scanning each individual subpixel.” More specifically, fragments
that are fully covered are sampled only once. For partially covered fragments, one sample
is applied per fully covered row, and two per partially covered row. Further details of

our rasterization algorithm can be found in Appendix A.

= Pixels

Il Full pixel coverage
[Partial pixel coverage with some subpixel rows fully covered
[Partial pixel coverage with no subpixel rows fully covered

Figure 4.7: A typical polygon.

4.3.6 The Local Shading Algorithm

Computing the shaded colour of each fragment, based on a local shading model, is an
important but time-consuming part of rasterizing a polygon. Using the familiar Phong
shading model, described below, we sample an interpolated normal between 1 and 64
times per pixel in order to determine diffuse and specular reflection intensities. Despite
a number of optimizations we have incorporated into this algorithm, it remains the most
expensive element of rasterizing polygons.

For practical reasons, our current shading algorithm provides only a rudimentary
set, of parameters: a single directional light source of variable colour and direction. Its
design is extensible, however, and could easily be adapted to accommodate multiple light
sources, including point sources and spotlights. As a further simplification, we have fixed
the colour of the specular component to the colour of the light source, and colours of
the other two components to that of the polygon, as illuminated by the light source.

These settings capture the behaviour of Lambertian and specular reflectance for many

9A possible exception to this arises in the shading model, which may require sampling the normal at
each subpixel; none of the other interpolated quantities requires this.

80 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

4

Figure 4.8: The elements of the Phong shading model.

common materials. Again, with only minor modification, our implementation could
permit separate specular, diffuse, and ambient colours, as do many common rendering

packages.

The Phong Shading Model

At each sampling point, the diffuse and specular intensities, I, and I; are computed using
the equations below, where the symbols kg, ks, 5, V, N, L, and H respectively denote
the diffuse and specular reflectance coefficients, the specular exponent, the view vector,
the surface normal, the light direction vector, and the halfway vector. The view vector
extends from a point on the polygon’s surface to the viewer. The halfway vector, as its
name suggests, points halfway between L and V. The relationship among the different
vectors is shown Figure 4.8. In the equations that follow, these vectors are assumed
to be normalized. A more thorough discussion of the Phong model can be found in
[FV83, HBY4|.

Our implementation uses a constant view vector per polygon, which is based on
the polygon’s centre as derived by averaging the vertices. For reasonably small screen-
projected polygons, this approximation is perfectly adequate and saves a great deal of
work in eliminating per-sample renormalization of V, which would otherwise be required

in recomputing H for each sample.

I; = kgN-L (4.19)
I, = k (N-H)> (4.20)

4.3. RASTERIZATION 81
colour := I{IaCLCM + (1 - ka)(IsCL + IdCM) (421)

As shown in Equation 4.21, the colour field of a fragment is assigned a value based
on the material colour and the intensity values I; and I,. The symbols C,; and Cy,
respectively denote the material colour and the light colour, and k, represents the ambient
light coefficient. We treat the colours as 3-dimensional [r, g, b] vectors with r, g, be [0, 1],
and define the product C;Cy; to be the vector [Cr, Casy, CryCarg, CryChryp)-

Renormalization of the interpolated normal is optimized by storing the inverse recip-
rocal function f(r) = 1/\/x in a 192-element table for x€(0,1.5]. The squared norm
of the interpolated normal is converted to a table index, and the normal is then scaled
by the table value at that index. Although it seems surprising that the length of the
interpolated normal could exceed one, this can happen near the edges of a polygon that
is nonplanar in one or more of its normal components.

Because the greatest expense in applying the Phong model lies in renormalizing the
interpolated normal (despite the optimized table-lookup of the 1/\/x function), we com-
pute the diffuse intensity in addition to the specular at each shading sample. Although
diffuse lighting did not appear to contribute significantly to aliasing, it is relatively in-
expensive to sample, given that the surface normal needs to be normalized anyway.
Moreover, the sign of the value obtained for I; can serve as an indication of whether the
specular intensity needs to be computed at all (for opaque surfaces, if N - L < 0, then

I;:= 0 and I, := 0, because of self-shadowing).

Aliasing in the Shading Model

While the A-Buffer does a good job of eliminating spatial aliasing along an object’s sil-
houette, it does not address potential aliasing artifacts in the shading. These can arise
from a rapid variation in the shaded colours of fragments, which becomes difficult to
faithfully capture with a standard per-pixel sampling approach. To achieve reasonable
image quality at smaller scales, this type of aliasing also needs to be dealt with. Paint-
strokes presented a particular challenge in this regard, due to the rapid variation in their
surface normals over possibly very short distances. When used to model thin objects,

such as hairs, they can have a screen-projected thickness of a couple of pixels or less, yet

82 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

the surface normals across this width always span nearly 180 degrees.

In its early stages of development, our shading algorithm applied a Phong sample at
a single fixed position within each pixel, as is the norm with traditional scan-conversion
methods. This approach met with generally poor results. Although it was fast, the
image quality was substandard: there was considerable spatial aliasing in the specular
highlights, especially noticeable during animation in the form of flickering and crawling
artifacts. Materials such as water or hair, having high specular exponents, were particu-
larly prone to this aliasing. An image rendered with only one sample per fragment (which
resulted in approximately two samples per pixel of coverage, due to the large number of
partially covered fragments) is shown in Figure 4.11 for reference. Note that much of
the aliasing in the full-size image is disguised by the quality of the laser printing. The

aliasing is more evident in the zoomed image.

We subsequently attempted to reduce the aliasing by averaging out the normal com-
ponents over each fragment, as is done with the colour, opacity, and reflectance values.
While this improved the results somewhat, it still left much to be desired for specular
exponents higher than 4. The problem with using a fragment-averaged normal is that
this is still just a once-per-fragment sampling approach (with a variable position), so it
cannot faithfully capture very rapid variations in specular intensity. The general problem
of filtering normal distributions has also been noted in earlier work by Alain Fournier

[Fou92].

The problem with using an averaged normal is the following: When the specular
exponent e, is high, the specular intensity function ks(IN - H)® decays very sharply from
its maximum as N deviates from H, so if the averaged normal misses H by only a small
amount, it causes a gross underestimate of the pixel’s intensity. By the same token, if
the average happens to be very close to H, it causes a large overestimate. Figure 4.9
helps to explain this phenomenon, showing two cases where an average normal yields a
poor estimate of average shading intensity. In this figure, we assume that all the normals
and the halfway vector are coplanar, so that each can be expressed as a single angle, 6,
with H represented by 6 = 0. Note that the angle 6,,, corresponding to the normalized

average vector of the normals represented by 6,,;, and ,,,, is in fact the average of the

4.3. RASTERIZATION 83

angles 0,,;, and 6,,.., since the average of two unit vectors bisects the angle between
them. The intensity function /;(f) and its exact average fs(ﬁ) over the range [fmin, Omaz)

are given by the equations

I,(0) = ks cos™¥6 (4.22)
- 1 Omaz
0 = — / 1,(0) d (4.23)
emaa: - emm Omin
18
o PPN w
0 emn eavg er‘r\ax 9 err'in eavg er‘r\ax
(a) I, overestimated (b) I, underestimated

Figure 4.9: Problems with using an average normal for local shading.

In an animated scene, this manifests itself through flicker, produced by alternately
underestimating and overestimating the specular intensity. Moreover, the offending pixels
tend to occur in conspicuous stairstep patterns, an artifact visible even in still images and

especially so in animated ones where the “stairs” crawl disturbingly across the screen.

Antialiasing the Shading

Our solution to the aliasing problem was to obtain a more precise sampling of the specular
intensity function by applying multiple Phong samples per fragment, at a rate determined
by four features of the underlying polygon: size, distribution of normals, the &, coefficient,
and the exponent e;. These attributes serve to identify polygons that are susceptible to
specular aliasing. When rasterizing such polygons, the shading model is evaluated, as
necessary, at up to subpixel resolution. Polygons that are not prone to aliasing are

sampled at lower rates, to a minimum of one sample per pixel. More precisely, the

84 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

Horizontal Sampling Rate
1 2 4 8

aley buldwes oA

[o]o]e[o[oe]e]e]

Figure 4.10: The 16 arrangements of sampling grids used in our model.

shading samples occur on a variable grid within the pixel, having horizontal and vertical
densities of 1, 2, 4, or 8 subpixels. The 16 possible sampling grids for fully covered
fragments are shown in Figure 4.10. The way in which the appropriate sampling grid is
selected is detailed in Appendix A.

The rendered images in Figure 4.11 attest to the efficacy of this dynamic sampling
approach. Note that Figure 4.11(c) achieves the same image quality as 4.11(e), using
only half as many samples. Although our supersampling approach is quite effective, some
aliasing may still be evident in scenes with rapid normal variation, even at the maximum
sampling rate of 64 Phong samples per pixel. Using a higher subpixel resolution would
certainly alleviate this, although other techniques such as jittered sampling or accurate
table-based preintegration of the shading model’s light intensity function may provide
a more efficient solution. The latter has been implemented in polyline methods for

rendering hair, as discussed in [LTT91, RCI91].

4.4 Blending the A-Buffer Fragments

Once all the polygons have been rasterized, the A-Buffer consists of a multitude of frag-
ments, each associated with a particular pixel and ordered by Z.;,. At this stage we are
ready to blend the fragments over each pixel to determine the pixel’s colour. The purpose

of the blending algorithm we are about to describe is to express a set of contiguous (in

4.4. BLENDING THE A-BUFFER FRAGMENTS 85

(a) Minimum sampling rate (2 samples/pixel (b) Zoomed image
on average)

(c¢) Adaptive Sampling Rate (33 samples/pixel (d) Zoomed image
on average)

(¢) Maximum Sampling Rate (64 sam- (f) Zoomed image
ples/pixel on average)

Figure 4.11: Images generated with minimum, maximum, and adaptive sampling rates.

86 CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

terms of Zy;,) fragments over a given pixel as a single visually equivalent fragment. We
will explain what is meant by this shortly.

In simple terms, the A-Buffer blends the fragments over a pixel by computing a
weighted average of the their colours, where the weighting factor for each fragment is
its coverage.' However, we can only apply this simple rule to fragments with disjoint
coverage masks. If any masks overlap, we need to compute the effective colour and
coverage of the overlapping regions, and then blend these regions together, along with
any non-overlapping ones, using the coverage-weighted averaging. The way in which
overlapping fragments are combined can be quite complex, and this makes blending an
interesting problem.

Our blending algorithm is embodied in the function BlendFragment which is based
on the Blend under_mask routine outlined in [Car84]. BlendFragment blends a list of
fragments ordered by Zy;,, yielding a composite colour and coverage value. Its parameters
are the first fragment in the list, and a search mask which defines the region over which
the blending is to occur. All the fragments’ coverage masks are temporarily clipped to
the search mask to restrict blending to only that region. The purpose of this is to break
a region where fragments overlap in an arbitrary way into several simpler subregions over
which their masks are either disjoint, or the front fragment’s mask completely encloses
the rear fragment’s. These subregions are individually blended in back-to-front order
using the formulas described in §B.2; and then merged together.

BlendFragment is a recursive function. Its initial call uses a search mask that covers
the entire pixel. Each recursive entry into the function subdivides the search mask into a
submask that overlaps the current fragment and a submask that does not (both possibly
empty on later recursion), and then recursively blends all the remaining fragments using
these submasks as search masks. The blended results over each submask are finally
combined to yield the blended result over the original search mask, the entire pixel.
In the worst case, each recursion involves splitting the submask into two regions, one

overlapping the fragment and the other not, and both being constrained to the search

OFor opaque fragments, the coverage equals the area, so the filtering scheme becomes one of area-
averaging colours. This is probably why the A-Buffer’s full name is, misleadingly, “the antialiased
area-averaged accumulation buffer”.

4.5. SUMMARY &7

mask.

The pseudocode for the BlendFragment function, as well as a detailed derivation
of all the formulas that it uses, are presented in Appendix B. We conclude this sec-
tion with a brief evaluation of the A-Buffer’s fragment-blending routine. Its strengths
are fast, accurate compositing of overlapping transparent surfaces, as well as highly
accurate edge antialiasing. Its weaknesses are high memory consumption, and an im-
precise representation—and therefore occasionally poor antialiasing—of interpenetrating

surfaces.

4.5 Summary

The polygon renderer we have discussed in this chapter offers two features that are critical
for rendering complex geometry at small scales: good spatial antialiasing, and reasonable
speed. The former is achieved by using the A-Buffer, which provides excellent silhouette
antialiasing, and by supersampling our Phong shading, which mitigates aliasing in the
shading model. The latter is due to the efficient fragment blending and Phong sampling

algorithms that these techniques respectively use.

88

CHAPTER 4. RENDERING POLYGONS USING THE A-BUFFER

Chapter 5

Results

In this chapter, we complete our discussion of the paintstroke primitive by summarizing
its strengths and weaknesses, and compare it with the alternative rendering methods
discussed in Chapter 2. We begin with a general evaluation of the paintstroke, and then

proceed to the comparisons.

5.1 Evaluating Paintstrokes
5.1.1 Performance

To evaluate the performance of the paintstroke primitive, we shall focus on the two main
elements that determine its rendering speed, given the polygon-based projective rendering
framework in which it operates. The first of these is the paintstroke’s tessellation quality,

as defined below. The second is the expense of obtaining the tessellation.

Quality of Tessellation

We measure a paintstroke’s tessellation quality by the ratio of its polygon count to
the (somehow quantified') quality of the rendered image it produces. Given that a
smooth silhouette, alias-free Phong shading, and consistency in animation (i.e. absence
of popping) are the main criteria of image quality, the tessellation quality of paintstrokes

is very high within their intended range of small to medium scales, albeit with a few

!This type of quantification is difficult, since our perception of image quality is highly complex. For
example, if the thickness of a rendered paintstroke is slightly off (i.e. deviates from the model), this
has little impact on perceived image quality. But if the thickness fluctuates during an animation (say
between this wrong value and the right value), this degrades the image quality considerably, even though,
on average, the fluctuating thickness is more accurate than if it were consistently wrong.

89

90 CHAPTER 5. RESULTS

exceptions. By directly tessellating a generalized cylinder’s screen projection rather than
its true surface, paintstrokes obviate the large number of breadthwise polygons required
by the latter approach to yield a smooth, round-looking silhouette.

Although a paintstroke’s breadthwise distribution of normals differs from that of a
true generalized cylinder (particularly at quality level zero), the discrepancy is consistent
from frame to frame and is sufficiently small that it does not appreciably degrade the
image quality, provided that the paintstroke’s quality level is suited to its scale. However,
if a paintstroke’s shading needs to be particularly accurate, or if it needs to be precisely
rendered when nearly collinear with the view vector, higher quality levels would need to
be used even at small scales, increasing the polygon count accordingly. But unlike other
methods which must always use large numbers of polygons just to ensure a smooth and
consistent silhouette (as we shall see in §5.2), paintstrokes require higher quality levels
only in these particular cases, in which they still tend to use fewer polygons than general
methods that polygonize the eye-space surface. While there are cases where paintstrokes
fail to produce good images (discussed in §5.1.3), in general, they achieve a high degree

of image quality using few polygons.
Cost of Tessellation

The tessellation cost of paintstrokes can be approximated by considering the key opera-
tions involved, which are summarized in the list below. The accompanying cost approx-
imations are based on paintstrokes with no global shading or view-dependent opacity
variation, since these are not strictly part of the tessellation. Nevertheless, there is still
some overhead in supporting these features whether or not they are used. The cost of

each step is expressed using an approximate number of FLOPs of the form [+, x, +, \/]
1. Transform control points into eye-space. [12,16,0,0] per control point.

2. Generate piecewise interpolants based on control points and check for
inflection points. [30,40,0,0] per control point (no inflection points); [35,45,1,1]

per control point (with inflection points).

3. Lengthwise subdivision. [50,45,5,3] per segment.

5.1. EVALUATING PAINTSTROKES 91

4. Compute colour, opacity, and reflectance, based on interpolants. [15,15,0,0]

per segment.

5. Generate ring of vertices and their normals; project vertices into screen-
space. {[35,35,6,2] for quality 0, [45,45,7,2] for quality 1, [60,60,8,2] for quality 2}
per segment. This assumes only front polygons are drawn. Back polygons would

add [10,10,1,0] or [15,15,1,0] per quality-one or quality-two segment, respectively.

6. Check for degenerate polygons in tessellation and correct them. [12,8,0,0]
per simple polygon (typically > 80%); [27,38,1,0] per complex polygon (typically
< 20%);

Overall, the tessellation uses a large number of additions and multiplications, but
a modest number of the more expensive division and square root operations. Profiling
tests on a 200 MHz PowerPC 604e system indicate that paintstroke tessellation consumes
between 5 and 10 percent of the total rendering time, depending on the amount of screen
coverage. This statistic is, of course, based on the speed of our software-based polygon
renderer, which is more than an order of magnitude slower than the hardware-based
systems found in graphics workstations. Nevertheless, even if speed improvements in
the polygon rendering were to increase the proportion of tessellation time to as much as
50%, a multiprocessor pipeline architecture could effectively reduce the cost to zero by
parallelizing the tessellation of each frame with the rendering of the previous one.

One way to improve the efficiency of tessellating simple paintstrokes would be to
create a separate version of the algorithm that does not permit view-dependent opacity
variation or reflectance interpolation. This would eliminate many of the additions and
multiplications involved in interpolating these quantities. A more significant improve-
ment would be a table-based vector normalization function. Normalization accounts for
all but one of the square-root operations, and the same number of divisions. Because
the range of vector norms encountered by the algorithm is not fixed, a simple reciprocal
square root table, as was used in the Phong shading algorithm of Chapter 4, would not
do. However, if the norm is decomposed into its mantissa and exponent, the former could

be table-indexed and the latter divided by the constant -2, using a combination of right

92 CHAPTER 5. RESULTS

shifting and subtraction. In this case, the table index would incorporate the parity of the
original exponent as an additional digit. This simple algorithm could, moreover, easily

be incorporated into hardware.

5.1.2 Other Features

In addition to the efficiency of their tessellation, paintstrokes offer further modelling and
rendering advantages. The special rendering effects described in §3.3 simulate global
shading and volumetric opacity, which usually require the use of more expensive render-
ing techniques (e.g. shadow buffering and ray-tracing). Although these effects are only
approximated with paintstrokes and are limited in scope, they nevertheless prove useful

in modelling certain classes of objects.

The paintstroke’s representation of a tube, using a spline-based path with variable
attributes at the control points, is efficient and intuitive. Whereas more general surfaces
are specified with a mesh of control points, this would be difficult to manually generate
for a generalized cylinder, probably requiring intermediate translation from a simpler rep-
resentation similar to ours. It is also worth pointing out that physically-based simulators
sometimes model tubular objects (e.g. hairs) with simple curves or even point masses.
By outputting points on the curves or the point masses themselves, such programs can
with minimal effort produce generalized cylinder descriptions that can be rendered with

paintstrokes.

5.1.3 Limitations and Proposed Improvements

Although the paintstroke primitive as presented accomplishes its basic goal of efficiently
rendering generalized cylinders at small to medium scales, it leaves plenty of room for
improvement. The following are some of its current limitations, along with ideas on
possible solutions that may find their way into future implementations. We begin with

fairly specific problems, and then move on to general limitations.

5.1. EVALUATING PAINTSTROKES 93

Quality Level Limitations

Many limitations of the paintstroke primitive are tied to its approximative nature. The
breadthwise distribution of normals and the self-occlusion accompanying sharp screen-
space curvature, both visible in Figure 5.1, exemplify approximations whose fidelity varies
with the paintstroke’s quality level. At quality level two, they produce very accurate
results, but at quality zero, the approximations are clearly inaccurate. By regulating a
paintstroke’s quality level according to the estimated thickness of its screen projection—
something our algorithm can do automatically—this inaccuracy can be prevented from
degrading image quality at larger scales, while still allowing for lower quality paintstrokes

to be used at smaller ones.

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 5.1: A paintstroke rendered at the three quality levels.

Endcaps

As is easily seen in Figure 5.1, the endcaps used with quality-one and quality-two paint-
strokes are crude, consisting of simple squares or octagons. Although this is acceptable at
smaller scales (which is where paintstrokes are most useful) it greatly degrades the image

quality of larger paintstrokes, especially those that are beyond 10 pixels of thickness at

94 CHAPTER 5. RESULTS

the endcaps. This problem can easily be solved by using higher-degree polygons as the
paintstroke’s size increases. Tables could provide the vertex positions (relative to some
fixed coordinate frame) for a number of such polygons, to be used at various scales. This

improvement will likely be incorporated into future versions of the paintstroke primitive.

Quality Level Transitions

Transitions between quality levels pose another challenge for paintstrokes, because the
resulting abrupt changes in normal distribution tend to produce equally abrupt changes
in shading. At present, the only way to completely eliminate this popping artifact is
to hold a paintstroke’s quality level constant. This still provides some degree of level-
of-detail adjustment through the paintstroke’s adaptive lengthwise tessellation, but it is
clearly not an efficient solution.

A possible alternative representation of normal vectors that will be outlined in Chap-
ter 6 would greatly improve the accuracy of normal distributions for low-quality paint-
strokes, and virtually eliminate popping artifacts for all changes in quality level. Another

solution may be a morphing approach similar to that of Hoppe’s geomorph [Hop97].

Viewing Direction Problems

Paintstrokes that are fairly straight and nearly collinear with the view vector can present
further difficulties. At quality level zero, they become shortened and ultimately disap-
pear, while at the higher quality levels they reveal a polygonal (square or octagonal)

cross-section.?

The problem arises because the paintstroke’s central path begins to de-
generate into a point. Since our method relies on this path to reproduce the geometry of
a generalized cylinder, it cannot properly render paintstrokes in this situation. Moreover,
the problem cannot be solved by using smoother endcaps, since the endcaps will not nec-
essarily cover the paintstroke: consider a paintstroke that tapers at the ends, as shown in

Figure 5.2. By judiciously adjusting the paintstroke’s quality level to its rendering scale,

the visual impact of this artifact can be minimized.

2 As Figure 5.1 demonstrates, this does not happen with curved paintstrokes, even if they do approach
collinearity with the view vector at some point.

5.1. EVALUATING PAINTSTROKES 95

Figure 5.2: A tapering quality-two paintstroke viewed head-on.

Transparency

Transparent paintstrokes of quality one or two exhibit regions of erroneously high opacity
when viewed under high screen curvature, as shown in Figure 5.3. The problem arises
from an overlap among neighbouring paintstroke polygons. Whereas the overlap has no
visual effect on opaque paintstrokes, it is easily seen in transparent ones because of its

higher opacity than the surrounding non-overlapping polygons.

oL

[

Figure 5.3: Transparent paintstrokes under sharp screen curvature.

The ideal solution to this problem would be to find a way to eliminate the overlap
that accompanies sharp screen curvature. This is something we accomplished for quality-
zero paintstrokes, but have been unable to do at the higher quality levels. Eliminating
the overlap at all quality levels would not only solve the image quality problems with
transparent paintstrokes, but also improve the efficiency of rendering opaque ones® by
eliminating unnecessary rasterization and blending operations.

A simpler but less elegant alternative would be to keep the overlap, but to ignore its

effect on opacity. For this purpose, a fragment’s tag identifier, introduced in §4.2, proves

3Note, however, that the regions of overlap are quite small and have only a minor impact on overall
efficiency.

96 CHAPTER 5. RESULTS

useful. Fragments from each polygon could be assigned a unique tag number that is incre-
mented for each successive polygon along the paintstroke’s path. The fragment-blending
routine could then inexpensively determine whether a pair of overlapping fragments origi-
nate from neighbouring polygons, simply by comparing their tag numbers. If they do, the
rear fragment in the pair would be skipped, eliminating its effect on the pixel’s blended
opacity. This approach would also correctly handle the legitimate overlaps of paintstroke

polygons, since such overlaps would never occur between neighbouring polygons.
Shadows

A more general limitation is the absence of shadows in paintstroke rendering. Although
our global shading algorithm is cheap and effective when applicable, its scope is quite
narrow, being restricted to a fairly homogeneous layer of paintstrokes covering a convex
shape. A more general global shading technique, like the depth buffering algorithm
proposed by Williams in [Wil78], would make a useful addition to our rendering engine.
Because this algorithm is applied at the polygon level, it would require no modification
to work with opaque paintstrokes. Dealing with transparency, on the other hand, would

require much further work.
Fast Phong Shading

Another issue is the technique of fast Phong shading, which is common in hardware
implementations. Fast Phong shading, as described by Bishop [BW86] and Kuijk [KB89],
approximates the Phong intensity function using a Taylor polynomial, which can be
efficiently evaluated using forward differences. The main limitation of this method is that
it cannot be applied to polygons that contain a large amount of normal variation (over
60°, according to Bishop), which are precisely the sort of polygons that are generated by
paintstrokes. In fact, even with standard Phong shading, the sizable normal variation
of a quality-zero paintstroke segment will cause the interpolated normal to become very
short at some point (as show in Figure 3.25), thus changing direction very rapidly during
the interpolation and causing aliasing if not appropriately supersampled.

Note that this problem affects all polygonal models with high per-polygon curvature,

especially the triangular prisms that are frequently used to approximate thin tubes in

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 97

hair rendering [Mil88, WS92]. Two solutions, neither of them particularly appealing,
are to use higher quality levels for the paintstrokes, or to increase their nudge factors,
as discussed in §3.2.4, so as to reduce the breadthwise range of normals. The former
maintains image quality at the expense of rendering speed, while the latter does the
opposite by avoiding extra breadthwise subdivisions and giving the paintstroke a non-

circular (but consistent) normal distribution.

Level-Of-Detail Limitations

The level-of-detail adjustment of paintstrokes is unable to simplify a paintstroke-based
object down to very coarse levels: at a minimum, a paintstrokes must have one polygon
per control point (excluding the first one). This prevents radical global simplifications
possible with many other schemes, as described in [CVM196, Hop96, LE97]. For example,
given a dense spherical cluster of tubes (or a single tube tightly rolled up in a ball), the
latter algorithms would at some point re-polygonize the model into a simple roughly
spherical surface, whereas paintstrokes would never do this. We do not view this as a
serious shortcoming, however, because paintstrokes are intended for use at scales large
enough that individual tubes (and their parallax and blocking effects) are still discernible.
Smaller scales than this are left to other techniques, which may well involve vast global

simplifications of the kind just mentioned.

General Limitations

The paintstroke’s circular cross-section and absence of texture-mapping are two very
general limitations that present opportunities for future research. We will examine these

possible extensions to the primitive in Chapter 6.

5.2 Comparison with Static Polygonal Models

In order to permit a thorough comparison of paintstrokes with efficient static models of
generalized cylinders, we have implemented an algorithm that translates a paintstroke
description into an equivalent statically tessellated polygonal model. For obvious rea-

sons, the latter excludes the paintstroke’s orientation-based global shading and opacity

98 CHAPTER 5. RESULTS

variation effects, but it captures all of the other features. The algorithm is similar to
one used by Jules Bloomenthal in [Blo85] for polygonizing tree branches, although ours

is adaptive to the lengthwise curvature of the tube.

5.2.1 Polygon Extrusion Algorithm

The polygonal representation produced by our algorithm is the orthogonal extrusion® of
an n-sided regular polygon along a given path, where the polygon’s size may vary, but
it may not rotate about the path.> By this we mean that the polygon is fixed in the
Frenet frame that travels along the path. A few examples are shown in in Figure 5.4.
Whereas the degree (i.e. number of sides) of the polygon is directly set by the modeller,
the number of lengthwise segments is minimized by the algorithm, subject to the tube’s
world-space curvature and a user-specified tolerance value.

The polygon vertices generated by the algorithm occupy a number of circular rings,
each centred about some point on the path of extrusion, and lying in a plane normal
to the path’s tangent at the point. The resulting model essentially has two dimensions
of complexity, which determine its level of detail: the lengthwise granularity, defined by
the number of rings of vertices used; and the breadthwise subdivision granularity, the
number of vertices per ring. The first of these is determined jointly by a tolerance value
chosen by the modeller, and by the magnitude of curvature in the path. The second is

directly specified by the modeller.

lengthwise segment

[ath of extrusion
L\«
T 1)

Figure 5.4: Extrusions of several regular polygons to produce tube tessellations.

The lengthwise subdivision algorithm is similar to that used in paintstrokes, recur-

4By this we mean that the polygon moves orthogonally to the plane spanned by its vertices.
5 Allowing the rotation would result in a bumpy silhouette and a spiral-like quality to the shading.

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 99

sively splitting a segment in half until the eye-space analogues of the radius and positional
constraints (as described in 3.12) are satisfied. Specifically, the algorithm compares each
of the z,y, 2 components of the tube’s spline path over a given segment with the linear
interpolant to the spline over the same segment. This is virtually identical to Position
Constraint II of the paintstroke, except that no perspective adjustment is made. The
radius component is compared with its linear interpolant in exactly the same way as the

Radius Constraint of paintstrokes, but again with no perspective adjustment.

5.2.2 Properties of Polygonal Extrusions

As is the case with all statically tessellated models, in order to determine an appropriate
level of tessellation granularity, the approximate range of scales at which the model
will be rendered must be known. As is demonstrated in the work of Gavin Miller and
Watanabe & Suenaga, [Mil88, WS92|, very small-scale tubes, such as hairs viewed from
a moderate distance, can typically be modelled with only triangular extrusions and fairly
coarse lengthwise subdivisions. As the scale increases, finer and finer granularities become
necessary to maintain image quality.

Experience has shown that low-degree polygonal extrusions can make very good ap-
proximations to a thin circular tube. For example, a triangular extrusion can in some
cases produce acceptable results for tubes up to about 5 pixels in diameter of projection,
despite inaccuracies in the thickness and shading of the image. The projected thickness
of a triangular tube varies between 3/4 and v/3/2 of the true thickness of the equivalent
circular tube, while the range of surface normals visible to the viewer spans between 120°
and 240° (i.e. 2/3 to 4/3 of the true range). As shown in Figure 5.5, similar fluctua-
tions are present with higher-degree regular polygons, though their ranges decrease as
the degree increases. The decrease in the thickness ranges is not monotonic: extruding a
polygon with an odd number of vertices produces a smaller range of thickness variation
than extruding the polygon with one more vertex. As an example, consider the square,
whose extrusion thickness lies within the range of [1/y/2,1] times the diameter. The
magnitude of this variation is 29.3% of the diameter, compared to the triangle’s 11.6%.

As a result, polygons with an even number of vertices (and the square in particular) are

100 CHAPTER 5. RESULTS

generally poor choices for extruding into a tube—it is better to either add or remove a

vertex to make the polygon’s degree odd.

=o0C

Figure 5.5: View-dependent thickness ranges of polygon extrusions.

It can be shown that all polygonal extrusions whose vertices lie on the circular cross-
section of a tube underestimate its diameter from some viewing angles.® Hence, a useful
correction is to increase the radius of the ring of vertices to compensate for this and make
the extrusion’s average thickness over all possible viewing directions (or some desirable
subset thereof) equal to the tube’s true thickness. While this solution improves the accu-
racy of an extrusion’s thickness, it does nothing to eliminate the fluctuations both in the
thickness and the normals. Fortunately, however, these fluctuations are not highly con-
spicuous, because they are gradual. If the (extruded) tube’s orientation changes smoothly
with respect to the view vector, the thickness and highlights also change smoothly. That
can be difficult to notice when the tube itself is moving across the screen, and especially
so when there are a number of tubes in differing orientations moving in different direc-
tions. The thickness fluctuations can also be camouflaged by a lack of contrast with the
background (which may consist of other similarly coloured tubes). These reasons help
to explain why simple triangular extrusions worked so well for modelling hair and fur in
[Mil88, WS92].

There are, however, a number of cases where low-degree polygonal extrusions fail to
produce a reasonable image even at small scales. The worst-case scenario is one where
a tube spins about its tangent vector at some point, which itself does not move. This
has two effects: it maximizes the fluctuations while keeping the tube’s image stationary

at the point. The combination of these produces visible fluctuations even at subpixel

6They never overestimate it. If the number of vertices is even, they attain it exactly; otherwise, their
maximum thickness always remains lower than the true diameter.

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 101

thicknesses.” Another situation in which the thickness inaccuracies can be troublesome
is one where fairly straight tubes are placed in an orderly arrangement, such as an
evenly spaced row or grid of parallel tubes. As the viewing direction changes, gaps
between adjacent tubes will grow and shrink noticeably. Problems can also arise from
the fluctuation of the normals, when light rays strike the tube from the side, as seen
by the viewer. As the range of normals fluctuates, the illuminated side of the tube will
perceptibly vary between higher (when the range is greater) and lower (when the range
is smaller) intensity. Even at subpixel thicknesses, this artifact is easily visible as a

variation in the tube’s overall brightness.

At larger scales, all of the above problems persist, but are compounded by silhouette
inaccuracies, which are no longer hidden by the small image size. When a section of a tube
becomes nearly collinear with the viewing direction, the the polygonal cross-section can
be easily seen, spoiling the illusion of a circular tube.® An example of this phenomenon
is shown in Figure 5.6. Unlike the thickness and shading fluctuations, which are visible

only in animation, this jagged silhouette must be avoided in still images as well.

(a) Octagonal extrusion (b) Quality 2 Paintstroke

Figure 5.6: A tube that becomes nearly collinear with the view vector.

"In fact, it would take a 16-sided polygon to attenuate the fluctuations to a reasonable level in this
case.

8With paintstrokes, this only happens if the entire tube is nearly collinear with the view vector, which
is impossible if the tube is moderately curved.

102 CHAPTER 5. RESULTS

5.2.3 Benchmark Comparison

Our comparison of the paintstroke’s tessellation with the static tessellation of polygonal
extrusions is based on a benchmark that renders all the models of the tube shown in
Figure 5.7 at various scales and viewing angles. Because our current algorithm for endcap
generation in paintstrokes is crudely implemented, we tapered the tube at the ends to
avoid using endcaps. This does not reflect a conceptual limitation of the paintstroke’s
tessellation, but only one of its implementation.

The methodology of the benchmark is as follows. We constructed a dense 3 x 3 x 3
matrix of paintstrokes, and rendered a set of animations of it, each consisting of a single
rotation about a diagonal axis (relative to the matrix), comprising 50 frames in total.
The animations were carried out at three different constant distances from the (centre
of the) matrix, so as to simulate rendering at a large, medium, and small scale. A single
frame from the three scales is shown in Figure 5.8. At each scale, two animations were
made, one using a conservative quality level that produced optimal image quality, and one
using an aggressive one that improved the speed at the slight expense of image quality.

Next, we converted this paintstroke-based scene description into three static polygonal
models, identical except in their tessellation granularities. The first one was coarse,
the second medium, and the third fine. Each of these was optimized for the large,
medium, or small scale of the animation, respectively, by using the minimum number of
polygons required to ensure high image quality (as explained below) at its corresponding
scale. Each polygonal model was then rendered in the same animations used with the
paintstrokes, one at each scale. That yielded a total of nine animation runs, in addition
to the paintstrokes’ six. As Figure 5.8 shows, the matrix used was filled very densely
with the tubes, so the screen-size variation of each tube’s image due to perspective
was negligible, even at the closest distance. This put the static models at virtually no
disadvantage (because of their fixed level of detail) when rendered at their respective
ideal scales.

Although the notion of a high quality image is a complex one, in calibrating the static
tessellation algorithm, we were primarily looking to eliminate silhouette discontinuities

and abrupt transitions in the shading, which could both arise either from an overly

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 103

(a) Quality-Two Paintstroke (b) Fine Static Model (558 polygons)

(¢) Quality-One Paintstroke (d) Medium Static Model (200 polygons)

(e) Quality-Zero Paintstroke (f) Coarse Static Model (96 polygons)

Figure 5.7: Paintstroke-based and static models of the benchmarked tube.

104 CHAPTER 5. RESULTS

(a) Large (b) Medium (¢) Small

Figure 5.8: Models of the tube used in our comparison.

permissive lengthwise tolerance, or an excessively coarse breadthwise granularity.” In
short, we were seeking the same level of image quality as was achieved in the aggressive
paintstroke animations. Although the latter tended to have less accurate breadthwise
shading profiles than the former, this is generally less important to overall image quality
than a smooth silhouette and smooth highlights, as can be easily seen in Figure 5.7.
On the other hand, if accurate shading is considered essential, then the conservative
paintstrokes allow for a completely fair comparison, offering the same level of shading
accuracy as the comparable static models.

The results of these benchmarks are summarized in Table 5.1. Statistics were gathered
for all 1350 tubes rendered (3 x 3 x 3 tubes/frame x 50 frames) and then divided by
1350 to provide a per-tube average. For the paintstroke-rendered animations, the only
difference between the conservative and aggressive primitives was in their quality levels;
both used identical lengthwise subdivision tolerances. The differences in image quality
between the two were very subtle, being evident only in the shading profiles the tubes.

At each scale, the most interesting comparisons are between the paintstrokes and the

polygonal model that is best suited to the scale. Figures describing the latter form a

9This was an empirical process that involved repeated trials and errors in reducing the polygon count,
while maintaining the quality of the entire animation sequence.

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 105
Paintstroke Static Polygonal Model
1 Avg. Tub

Scale Ve per © Conservative | Aggressive | Fine | Medium | Coarse
Breadthwise Quality 2 1 9-gon 5-gon | triangle

Total Polygons 268.4 135.0 558 200 96

Large | Polygons Rendered 238.3 118.2 275.9 98.6 46.5
Pixel Area 1186.6 1188.0 || 1190.6 1182.0 1155.1
Rendering Time (s/60) 11.01 7.48 12.19 6.78* 5.91*
Breadthwise Quality 1 0 9-gon 5-gon | triangle

Total Polygons 100.6 46.5 558 200 96

Medium | Polygons Rendered 87.6 43.1 277.5 99.3 47.4
Pixel Area 292.7 292.6 295.1 293.0 286.2
Rendering Time (s/60) 4.00 2.59 9.61 4.78 2.71*
Breadthwise Quality 0 0 9-gon 5-gon | triangle

Total Polygons 36.4 36.4 558 200 96

Small | Polygons Rendered 33.6 33.6 278.3 99.7 47.8
Pixel Area 72.4 72.4 73.6 73.1 71.4
Rendering Time (s/60) 1.48 1.48 8.52 3.45 1.88

Table 5.1: Comparison of paintstrokes with statically tessellated polygonal models.

diagonal of boldfaced entries in Table 5.1. Using a finer static model than the intended
one produces the same image quality but at greater expense. The figures for this appear
below the diagonal, and demonstrate the behaviour of static tessellation under non-ideal
scales. Entries above the diagonal represent lower tessellation granularity than is required
for the image scale. While these figures indicate the lowest rendering cost, they are not
directly comparable to the paintstrokes’ (whether conservative or aggressive), because of
the substandard quality of the image that is produced. We now turn to some explanations
and remarks about the statistics in the table.

Total Polygons The total number of polygons processed, prior to backfaceculling
(no clipping was required during the animation). Notice how paintstrokes have much
lower total polygon counts than the comparable static models. This is largely because
very few backfacing polygons are generated by paintstrokes. On a related note, the
storage and bandwidth requirements of the static models are directly proportional to
their polygon counts. Consequently, their data files and memory requirements were
considerable: approximately 1 MB, 370 K, and 180 K for the three granularities. That

compares with only 18 K for the paintstroke file, of which about a quarter was devoted

to unused global shading and opacity variation parameters.

106 CHAPTER 5. RESULTS

Polygons Rendered The total number of polygons that were rendered after back-
faceculling. While both conservative and aggressive paintstrokes have fewer rendered
polygons per tube than the corresponding static model, the difference is much narrower
than with the total polygon counts. In contrast to the static polygonal models, only a
small portion of paintstroke-generated polygons are culled, even at the higher quality

levels.

Pixel Area The total number of pixels rasterized, measured to within a subpixel, or
1/64th of a pixel. Regions that are overlapped by closer ones still contribute to the pixel
area. The slight discrepancies in average pixel area between conservative and aggres-
sive paintstrokes are mainly caused by their differing approximations of the screen-space
folds that appear at high screen curvature (shown at a larger scale in Figure 5.1). The
larger discrepancies among the static models arise from their view-dependent thickness
variations. Although we adjusted the radii of the vertex rings used in the tessellations
to yield an accurate average screen-space thickness over a uniform distribution of view-
ing directions around (and orthogonal to) the tube, the animation produces a different

distribution. These area discrepancies have negligible impact on benchmark performance.

Breadthwise Quality For paintstrokes, this refers to the quality level used. For static
models, it describes the degree of the regular polygon that was extruded. Notice how
at each scale, the conservative paintstroke quality level is roughly commensurate with
the degree of the corresponding extruded polygon: quality zero, using one breadthwise
polygon, is matched with the triangle; quality one, using two breadthwise polygons, with
the pentagon; and quality two, having four breadthwise polygons, with the nonagon. This
produces shading profiles of nearly equal accuracy, though the paintstrokes’ are always
perfectly consistent whereas the static models” are not. The aggressive paintstrokes, on
the other hand, have a smaller number of breadthwise polygons than the comparable

static models, resulting in less accurate, though still acceptable, shading.

Rendering Time The time taken to render the complete animation on a 200 MHz

PowerPC 604e system with 32 MB of RAM and 1 MB L2 cache, VM turned off. All

5.2. COMPARISON WITH STATIC POLYGONAL MODELS 107

polygons were rendered using the software-based A-Buffer engine with adaptively super-
sampled Phong shading, as described in Chapter 4. The rendering times shown include
the screen update at each frame (which is negligible compared to the rendering time) and
exclude the time to read in the data file (which was significant, taking up to 4 % of the
rendering time for the static models). They are expressed in ticks, or sixtieths of a second.
Times above the boldfaced diagonal in the ‘static polygonal model’ category are marked
with an asterisk, indicating that they are inadmissible because the image generated was

of noticeably lower quality than that produced with aggressive paintstrokes.

5.2.4 General Remarks

Our comparison shows that paintstrokes can provide a faster and more efficient means
of rendering generalized cylinders than statically tessellated models, even at the latter’s
optimal scale. This is especially evident with the aggressive use of quality levels, as
Table 5.1 clearly shows. This result has significance beyond simple static models, because
it implies that even a dynamic polygonal model, which consistently maintains appropriate
tessellation granularity, is unlikely to outperform paintstrokes in rendering generalized
cylinders, unless it takes advantage of their symmetries and view-invariant properties as
do the paintstrokes.

While these results are encouraging, they come with a few caveats. Hardware-based
polygon renderers tend to work faster (on a per-polygon basis) with static tessellations
than with dynamic ones. This is because such rendering engines rely on a pipeline
architecture to parallelize and thus expedite the rendering process. While a static set
of polygons can trivially keep the pipeline full, a dynamic tessellation scheme, as used
by paintstrokes, may not be able to keep up. Moreover, static models can be combined
with pre-computed modelling transformations into a display list, which further enhances
rendering speed. On the other hand, using such a rendering engine would most likely
require abandoning both the A-Buffer and the efficient antialiased Phong shading that
we are using, since these are not widely available in hardware. If that is acceptable,
then a good solution would be the pipeline approach, whereby each frame is dynamically

tessellated into a (static) polygon list while the previous one is being rendered. Given

108 CHAPTER 5. RESULTS

a multiprocessor architecture, this is a fast and efficient solution, which may become
a useful option if fast hardware A-Buffers, such as the one proposed by Schilling and

Strafler in [SS93], become widespread.

5.3 Comparison with Dynamic Polygonal Models
5.3.1 Blinn’s Optimal Tubes

Jim Blinn’s optimal tubes [Bli89] are a simpler modelling primitive than paintstrokes.
For drawing plain cylinders, their rendering speed is certain to be greater than that of
equivalently shaped paintstrokes, because of the fast (usually hardware-based) Gouraud-
shading polygon renderers they are suited to. However, optimal tubes lack many of
the key features that make paintstrokes a useful and flexible primitive: radius variation,
adaptive lengthwise subdivision, a specular shading model, normal interpolation (which
provides more accurate Lambertian shading as well as specular), and the ability to ac-
commodate multiple light sources.!® While optimal tubes may be valuable when these
features are not needed, paintstrokes are amenable to a much greater variety of modelling

scenarios.

Because Gouraud-shading does support the Phong shading model, and can therefore
capture specular reflectance, one may wonder why optimal tubes cannot do so. Although
Gouraud shading can apply the Phong model at polygon vertices (interpolating the re-
sulting colours rather than the normals themselves), this feature is inherently unsuitable
for optimal tubes. Specular highlights usually involve a fairly abrupt intensity variation,
which can only be accurately captured by a large number of Phong samples. Because
these samples are only taken at polygon vertices, the purpose of optimal tubes, which is
to reduce this number of vertices, is fundamentally incompatible with achieving alias-free

Phong shading.

100ptimal tubes could in fact accommodate additional light sources by introducing extra breadthwise
subdivisions along the shading boundaries of each light. Such a solution would, however, rapidly undercut
their chief advantage of using fewer polygons than more general tessellation schemes.

5.3. COMPARISON WITH DYNAMIC POLYGONAL MODELS 109

5.3.2 General Methods

As we have remarked earlier, one of the main reasons behind the paintstroke’s efficiency
is its specificity in modelling the generalized cylinder. Unlike general-purpose tessellation
algorithms that tessellate the true surface they are given, paintstrokes only tessellate the
approximated screen projection of a generalized cylinder. This is what allows them to
achieve accurate silhouette and shading approximations using a very small number of
large polygons, which more general methods fail to do.

General dynamic tessellation schemes, as used with NURBS or Bézier patches, may
vary the overall granularity of the polygon mesh according to curvature or screen size,
but they still tessellate the entire surface—they make no attempt to replace it with a
screen-projection (which is difficult to do with arbitrary surfaces). At any scale, their
ideal tessellation will be similar to the static models described in §5.2. As we have seen,
even without counting its tessellation cost, such a model renders more slowly than the
equivalent paintstrokes. Moreover, to render a tube with general parametric surfaces, a
mesh of control points would need to cover the tube’s surface. At very small scales, the
number of polygon vertices in an efficient tessellation may be less than the number of these
control points, which all need to be transformed to eye-space prior to the tessellation.
This problem does not arise with paintstrokes, which only specify the tube’s path and
thus use a much smaller number of control points.

Dynamic polygon simplification schemes, such as Hoppe’s [Hop96, Hop97|, achieve
smooth silhouettes by increasing the granularity of their polygon mesh near the edges.
This differs from the paintstroke’s approach, which is to construct polygons that precisely
conform to the silhouette. Consequently, paintstrokes are able to use fewer polygons
than these simplification schemes. Although the paintstroke’s tessellation might be more
expensive, this should make very little difference given its 5-10% CPU utilization rate
(based on profiling our implementation). Moreover, as mentioned in §5.1.1, a pipelining
architecture could be used to reduce the tessellation cost to virtually zero, provided that
it is at least as fast as the rendering phase.

Hoppe’s progressive meshes do offer two techniques that paintstrokes lack: view-

frustum-based simplification, and geomorphing. The first of these would be fairly easy to

110 CHAPTER 5. RESULTS

incorporate into paintstrokes, by (conservatively) suppressing tessellation over segments
that extend beyond the view frustum. A conversion of our Catmull-Rom splines to the
Bézier basis would help in this regard, by providing a convex hull for the paintstroke’s
path. A form of geomorphing could also be used with paintstrokes to eliminate possible
popping artifacts when quality levels change, although it would not be needed for the
re-tessellations within a single quality level, which are already free of popping.

As mentioned earlier, polygon simplification methods are able to work on a global
scale, collapsing unrelated surfaces into single polygons. This is something that pure
dynamic tessellation algorithms, such as the paintstroke’s, are unable to accomplish.
Although such global surface simplifications make valid shape approximations, the normal
distribution of the simplified geometry can differ markedly from that of the original
geometry, resulting in inaccurate shading. Volumetric textures, discussed in §5.6, provide

an alternative that addresses this important issue.

5.4 Comparison with Particle Systems

5.4.1 Brush Extrusions

Though intuitive and useful for interactive drawing applications, brush extrusions [Whi83|
make a poor general-purpose rendering primitive for particle systems. Their design bears
the fundamental inefficiency of touching many more pixels than the number that actually
appear in the brush stroke, a consequence of rendering multiple overlapping images of a
particle. Although Whitted proposes an efficient cache-based implementation of the copy
operations that composite the image of the brush tip into the stroke, this still involves
processing a large number of covered pixels that never appear on the screen. Moreover,
as mentioned in Chapter 1, in order to accurately render a generalized cylinder trail
with nondirectional lighting, the spherical tip would need to be continually re-rendered
as it moves. This would require computing the colours of many pixels that would be
overwritten by later tip samples—clearly not an efficient solution.

Another problem is that brush extrusions do not correctly handle transparency in

cases where their screen-projected image is self-intersecting. As with paintstrokes, this

5.4. COMPARISON WITH PARTICLE SYSTEMS 111

will occur with any curved path in eye-space from some viewing direction. Thus it is a
common occurrence, by no means restricted to paths that self-intersect in eye-space. The
problem is that, regardless of its opacity, a more distant particle is always overwritten
by a closer one. If, as a solution to this, true transparency blending were applied to all
the particles, that would make the pixel-overwriting nature of this approach even more

inefficient than it already is.

5.4.2 Cone-Spheres

Cone-spheres are quite similar to quality-zero paintstroke sections, but with two signifi-
cant differences: they use linear positional interpolants—whereas the latter use splines—
and they render spheres in order to join conical sections, something paintstrokes do not
(and need not) do.

Although the spheres ensure a smooth silhouette at the joint between successive
cones, the cones themselves are straight. Consequently, a large number of cone-spheres
are needed to adequately represent a tube with curves or nonlinear radius variation. This
number is greater than the number of paintstroke segments required for the equivalent
tube. One reason is the paintstroke’s adaptive lengthwise subdivision, which is based
on screen-space curvature—cone-spheres are static models that do not attempt to take
advantage of the fact that from some viewing angles, fewer of them are needed to visually
approximate a tube than from other angles. Another reason is that lengthwise normal
variation is interpolated across paintstroke segments, producing properly curved specular
highlights, whereas the cones of cone-spheres have straight highlights that are merely
blended together at the spheres to smooth possible corners.

As a final problem, when many short cone-spheres are concatenated to improve the
silhouette and highlights of the resulting tube, the spheres become increasingly enclosed
within the cones, and therefore unexposed. Yet, they are still rendered in their entirety,
only to be covered by the adjacent cones. As with the brush extrusion approach, this
type of pixel overwriting is inefficient.

Despite these shortcomings, cone-spheres are useful for rendering fairly straight tubes,

especially with texture-mapping or bump-mapping, which paintstrokes are currently un-

112 CHAPTER 5. RESULTS

able to provide.

5.4.3 Polylines with Precomputed Shading

When used at a thickness of several subpixels to a pixel, polyline methods with precom-
puted shading prove to be an efficient and high-quality method for rendering generalized
cylinders. Their shading model eliminates the aliasing artifacts that creep into paint-
strokes at these small scales, and it does so without incurring the expense of massive
oversampling, as the paintstrokes are forced to do. Incorporating this technique’s pre-
integrated shading model into quality-zero paintstrokes would extend the latter’s scope
to much smaller-scale geometry.

While polylines work extremely well within the above range of thicknesses, they per-
form poorly at larger or smaller scales. One reason for the former is that each line segment
has a constant colour, and therefore cannot express the breadthwise shading variation
one would expect to see in a real tube at close range. Another reason is that adjacent
line segments cannot always be seamlessly joined together, given that they are drawn as
skinny rectangles. From some angles, the joints will either contain cracks or will have
corners jutting out, which, though inconspicuous at small scales, becomes increasingly
noticeable as the tube’s screen thickness increases. While the latter problem can be elim-
inated by using mitre joints, this actually means drawing trapezoidal polygons instead
of line segments'!, which is more expensive and arguably not a true polyline solution.
At smaller scales, polylines can become prone to aliasing due to their sub-subpixel thick-
nesses. Moreover, larger and larger numbers of these (however inexpensive) primitives
are needed to fill a certain volume. At this point, constant-time methods such as texture
mapping and volumetric rendering become appropriate alternatives.

Thus, polylines are a superior alternative to paintstrokes when used at a small (sub-
pixel thickness) scale. By incorporating their pre-computed shading model into quality-
zero paintstrokes, the polyline’s advantages at small scales could be seamlessly integrated
with the paintstroke’s advantages at larger ones, all in a single hybrid primitive. Such

an integration presents an intriguing opportunity for future work.

' This is similar in principle to quality-zero paintstrokes.

5.5. COMPARISON WITH GLOBAL TEXTURE-MAPPING METHODS 113

5.5 Comparison with Global Texture-Mapping Meth-
ods

Rendering geometrically rich models by texture-mapping is a viable alternative to us-
ing paintstrokes, but only at a very small scale. Because it does not capture the full
three-dimensional geometry of a scene, a texture map quickly loses its image quality as
the scale of the textured objects grows. At larger scales, the effects of occlusion and lo-
cal illumination within a geometric model become increasingly view-dependent, and the
failure of texture-mapping to account for this tends to result in unrealistic, flat-looking
images, especially when viewed in motion. Moreover, objects incorporated into textures
are difficult to animate without directly re-rendering the geometry. At small scales (e.g.
fur viewed from far away) animation may not be necessary, as the motions tend to be
inconspicuous. But at larger scales, the need for animation can pose a problem for global

texture-mapping.

Figure 5.9: Example of an image not suitable for rendering with a texture map.

Although the hierarchical image caching approach by Shade et al. [SLST96] helps
to alleviate the problems with parallax, it essentially trades parallax error for rendering
time. This works well at moderately small scales, but as objects approach the viewer,
the lifespan of their cached images becomes smaller and smaller, requiring them to be

frequently re-rendered. This technique is not really a competitor to the paintstroke, but a

114 CHAPTER 5. RESULTS

framework within which paintstrokes and other rendering methods could be incorporated.

5.6 Comparison with Volumetric Textures

Because they entail the significant per-pixel expense of using volumetric ray-tracing, vol-
umetric textures represent an efficient alternative to paintstrokes only at a tiny scale, well
below any reasonable size for paintstrokes. Their near-constant rendering time involves
a high overhead, so texels need to contain a great deal of detail in order to make this
method worthwhile. Used appropriately, however, volumetric rendering is unparalleled
in its ability to generate images of high quality with very minor aliasing artifacts, and
doing so at a low cost relative to the other methods discussed in this chapter (except
global texture-mapping). These strengths make volumetric textures a vastly superior
method to paintstrokes, polylines, and other methods that attempt to render a scene’s

geometry in its full detail at extremely small scales.

Whereas mesh simplification is effective for approximating shapes, it fails to accu-
rately maintain the normal distribution of the underlying geometry. Because volumetric
textures contain exact reflectance distributions, rather than approximating them from
the geometry, they do not succumb to this problem; their approach is specifically geared
to shading microgeometry, which is difficult and expensive to accomplish with polygonal

representations.

Although considerably slower than the global texture-mapping methods of §5.5, vol-
umetric rendering generates images of much higher quality: By storing density and re-
flectance distributions, texels accurately capture the small-scale appearance and anisotropic
reflectance of the true three-dimensional geometry they represent. The two methods are
not incompatible, however—volumetric rendering can serve to provide the cheaper global
texture-mapping methods with high-quality pre-rendered images that are needed to con-

struct their texture maps.

5.7. SUMMARY 115

5.7 Summary

In this chapter we have argued that paintstrokes provide an efficient alternative to other
methods in rendering generalized cylinders, albeit within a limited range of scales. Al-
though much of our reasoning is based on a comparison with only a statically tessellated
model, the superior performance of paintstrokes even at the latter’s ideal level of detail
attests to the advantage of their view-dependent tessellation over the other more general

methods.

116 CHAPTER 5. RESULTS

Chapter 6

Conclusions and Future Work

6.1 Conclusions
6.1.1 Summary

A wide variety of models used in computer graphics can be reasonably approximated
by generalized cylinders. An efficient technique for rendering the latter is therefore of
considerable value. While a number of traditional rendering methods have been applied
to the task, they generally fail to achieve a good balance of speed and image quality at
small to medium scales. The purpose of this thesis was to provide an efficient means of
rendering generalized cylinders at precisely these scales. This was achieved through the
paintstroke primitive and its supporting A-Buffer-based projective rendering architecture.

By applying a view-adaptive tessellation algorithm that exploits the simplicity and
symmetry of the generalized cylinder’s screen-space projection, paintstrokes are able to
accurately approximate this surface using much fewer polygons than competing meth-
ods. Because of their view-dependent arrangement, a paintstroke’s polygons capture the
generalized cylinder’s appearance from all viewing directions!, despite the coarseness of
their tessellation.

The polygon renderer we have developed incorporates variable-resolution Phong shad-
ing within an A-Buffer framework, thereby efficiently reducing spatial aliasing along
silhouettes and near specular highlights. This allows paintstrokes to be used at the rela-
tively small scales for which they are intended, scales at which the faster, non-antialiasing

methods like the Z-Buffer fail to produce images of reasonable quality.

!'With the few exceptions noted in §5.1.3.

117

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.2 Contributions

While the general elements of our solution—view-dependent tessellation, the A-Buffer,
and adaptive Phong shading—are not new, their integration into a technique for rendering
generalized cylinders is unique. The following are our major contributions toward this

technique.
1. Tessellation of Generalized Cylinders
e Representing a generalized cylinder using a parametric spline path with the

radius specified at points along the path.

e Adaptively subdividing the generalized cylinder along the path, based on the

latter’s screen-space curvature.

e Using the geometry of the path to determine the positions and normals of
the view-dependent edges and centre of the generalized cylinder at any point

along the path.
2. View-Dependent Rendering Effects
e Simulating global shading by estimating the penetration distance of a light
ray to a point within a sphere.
e Simulating volumetric opacity using the path tangent and normal vectors of
a generalized cylinder.
3. Adaptive Phong Shading
e Estimating the maximum rate of angular variation during the componentwise
linear interpolation of a surface normal over a polygon.

e Using the above, along with the polygon’s size, orientation, and reflectance
properties, to determine an appropriate horizontal and vertical Phong sam-

pling rate over the polygon.

4. A-Buffer

6.2. DIRECTIONS FOR FUTURE WORK 119

e Presenting a rigorous derivation of Carpenter’s formulas [Car84] for blending

fragments.

e Improving upon Carpenter’s blending formula for intersecting fragments.

6.2 Directions for Future Work

A number of potential enhancements to the paintstroke primitive have been discussed
in the preceding chapters, particularly in Chapter 5. Some of these are straightforward
to implement, while others represent major avenues for future work. In this section we

briefly examine the latter.

6.2.1 Alternative Representation of Surface Normals

As we have seen in §3.2.4, the accuracy of a paintstroke’s shading is highly dependent
on its quality level. The lower the quality level, the smaller the number of polygons over
which the paintstroke’s (large) breadthwise normal variation is interpolated, resulting
in a less accurate approximation of a generalized cylinder’s circular profile. As we have
established in §3.2.4, linearly interpolating the components of a normal vector across the
breadth of a level-zero paintstroke yields a normal distribution that differs noticeably from
that of a generalized cylinder. Moreover, the distribution becomes increasingly prone to
aliasing as the range of interpolation approaches 180°. While quality-zero paintstrokes
redress the latter problem by using using less than 180° of breadthwise curvature, this
does nothing to correct (and, indeed, exacerbates) the former.

There is an alternative way to represent surface normals, which would enhance the
shading accuracy for all paintstrokes, particularly those of quality zero. Furthermore, it
would make shading differences among the three quality levels very small, eliminating
the potential popping that can arise when a paintstroke’s quality level changes. The
idea is to represent the normal as a pair of angles ¢ and 6, corresponding to the spher-
ical coordinates of a point on the unit sphere, expressed in rectangular coordinates as
[cos 0 sin ¢, sin @ sin ¢, cos ¢]. While the rectangular representation would be used in com-
puting the basic elements of the Phong model, namely, N - L and N - H, the normal

interpolation would be linear in ¢ and 6, using a single table of sine values to provide

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

quick approximations to sin ¢, cos ¢, sinf, and cosf. The four table indices correspond-
ing to the sines and cosines of the initial values for ¢ and # would be computed, and then
simply incremented by constant amounts to locate the sines and cosines for subsequent
angular values.

While this technique may seem expensive compared to the traditional interpolation in
rectangular coordinates, notice that it requires no normalization of the interpolated nor-
mal. This is a big advantage, since even table-assisted normalization requires computing
a vector’s norm, and then multiplying it by an appropriate scalar. More importantly,
this approach allows a single polygon to cover a full 180° of curvature and still closely
approximate the generalized cylinder’s “circular” normal distribution. Whereas (one-
dimensional) normal interpolation in rectangular coordinates yields the normal profile of
a parabola, this new method produces a distribution based on the curve — In(cos#), an
antiderivative of tan . This can be derived by an approach similar to the one presented
in §3.2.4. As Figure 6.1 illustrates, this curve’s normal profile closely approximates that
of a circle. Note also that the derivative of the normal vector with respect to 6 (the in-
terpolation distance) approaches infinity along the circle’s edges, whereas for the angular
interpolant, this derivative has a bounded, constant norm. This means the interpolated
distribution is less susceptible to aliasing than the true distribution of a generalized
cylinder, which is ill-behaved near the edges.

To apply this method to paintstrokes, an angular representation of their normals
needs to be derived. While this can be trivially accomplished by computing the normals
in rectangular coordinates (as we currently do) and then converting them to the spherical
representation, it may be more efficient to directly compute the normals in the spherical
coordinates. Also, if an inexpensive angular-coordinate transformation can be used to
rotate world-space normals into eye-space, this new representation would be feasible for

general polygonal models as well. Clearly, this approach warrants further examination.

6.2.2 Non-Circular Cross-Sections for Paintstrokes

Although a paintstroke’s shape is quite general, there are a variety of elongated objects

that the primitive cannot capture. These include blades of grass, feathers, leaves, cer-

6.2. DIRECTIONS FOR FUTURE WORK 121

|
|
|
|
|
|
|
|
1
=15
|
|
|

Figure 6.1: Circular vs. angle-interpolated normal profiles.

tain types of fish, and similar long, flat objects. Extending our primitive’s scope to
include tubes of variable cross-section would permit a much wider variety of objects to

be modelled using paintstrokes.

The challenge in implementing this extension is the following: the more a paint-
stroke’s shape is generalized, the more its symmetry is reduced and the complexity of
its screen projection increased. Yet, most of the paintstroke’s efficiency derives from the
symmetry of the generalized cylinder and the simplicity of its screen-space projection.
One solution that may provide greater modelling flexibility without greatly complicating
the paintstroke’s tessellation is to use an elliptical cross-section. As a start, the silhouette
of this primitive could be approximated from most angles with a standard paintstroke
whose radius varies around its girth, according to the viewing direction. This could be
implemented by incorporating a binormal vector into each control point, which, together
with the path’s tangent, would specify a Frenet frame. However, providing accurate
shading for such a paintstroke, as well as ensuring a correct head-on view clearly requires

further work.

122 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2.3 Texture-Mapping

A general limitation of paintstrokes is their inability to bear textures. This is a short-
coming we hope to redress in a future version, although, as mentioned in Chapter 3, the
ability to texture-map small-scale objects like paintstrokes is usually not of paramount
importance. At the small end of their useful range of scales, paintstrokes are too thin to
allow a two-dimensional texture on them to be discerned; in this case, simple lengthwise
colour variation, as we have provided, is all that is required. On the other hand, larger
paintstrokes would probably benefit from texture-mapping.

A simpler but also highly useful feature would be the application of one-dimensional
lengthwise textures. Although this can currently be simulated by using control points
to specify colour variation along the paintstroke’s path, the large amount of geometric
overhead involved makes this approach inefficient. Thus, an efficient implementation of
one-dimensional textures, and possibly traditional two-dimensional ones, would make a

useful addition to our primitive.

Appendix A

Details on the Polygon Renderer

This chapter provides additional implementation details on our polygon rendering engine.
It discusses the specifics of the rasterization algorithm, and the way in which the variable

sampling rate for the shading model is determined.

A.1 Rasterization Algorithm

The rasterization proceeds as follows. The plane equation and unit increments for each
component of the interpolant vector (as defined in §4.3.2) are computed, and then the
polygon is scanned vertically, and at each vertical step, horizontally. The vertical scan-
ning proceeds one subpixel row at a time. The z-position component is interpolated from
top to bottom along the left and right edges of the polygon, while the other elements of
the interpolant vector are scanned only along the left edge. For them we do not require
a right endpoint, since their horizontal increments are already known from the plane

equations, so all we need is a starting point.

The interpolant vectors at the left and right edges begin at the same height, that
of the highest vertex (or vertices). Prior to commencing the actual scanning, they are
shifted vertically a fraction of a subpixel, so as to position them exactly in the vertical
middle of the subpixel row they occupy. This initial nudge serves to align the interpolant
vectors with the vertical component of our sampling grid. A similar nudge occurs prior
to scanning each row, to achieve horizontal alignment. As shown in Figure A.1, a proper

alignment of the sampling positions is important because it provides a fast, accurate, and

123

124 APPENDIX A. DETAILS ON THE POLYGON RENDERER

= | <€— subpixel
- 4—— sample point

Figure A.1: Sampling positions for rasterization.

consistent way of determining which subpixels lie within a polygon and which don’t.!
This avoids the problem of doubly covering subpixels along a boundary shared by two
polygons, which, aside from being inefficient, produces higher-opacity seams along the
edges when the polygons are transparent.

Once the interpolant vectors are vertically aligned, they move down in unison, mark-
ing the endpoints of the long rows of subpixels between them. We call these rows subpizel
scanlines, and the interpolant vectors at their endpoints endpoint vectors. At each sub-
pixel scanline, the endpoint vectors are stored in an array. When all the subpixel scanlines
in a row of fragments have been traversed, the fragment row is scanned horizontally, as
described in the following paragraph. After that, the vertical scanning resumes, captur-
ing the endpoint vectors for the subpixel scanlines of the following fragment row, and so
on. The left endpoint vector contains all the values to be interpolated, while the right
one has only the z-position.

Horizontal scanning interpolates components of the left endpoint vector of each sub-
pixel scanline, moving one pixel to the right at each step and possibly skipping over
any fully covered fragments along the way, depending on the scanline in question. Each
horizontal step involves adding the constant horizontal pixel increment, which equals 8
times the subpixel increment obtained from the plane equations.

At this point, the initial horizontal nudge is applied to ensure horizontal alignment
with the subpixel grid. For reasons that will be explained shortly, only the first and fourth

subpixel scanlines, which run approximately through the top and middle of the fragment

!Sample points that straddle an edge are (arbitrarily) considered interior for the left edge and exterior
for the right. If the edge is horizontal, an analogous rule is applied based whether it is the top or bottom
edge.

A.1. RASTERIZATION ALGORITHM 125

row, respectively, are scanned across fully covered fragments. The remainder skip across
them to any partially covered fragments on the right side of the polygon. As Figures
4.7 and A.2 illustrate, the full fragments can only occur in a contiguous block flanked by
partially filled ones. And similarly, full subpixel rows must occur in a contiguous block,
possibly flanked by a partially covered row at either end. These facts follow from our
assumption that all rendered polygons are convex.

The reader may be wondering why the endpoint vectors for all the subpixel scanlines
in the fragment row were stored during the vertical scanning, only to be traversed again
during horizontal scanning. Indeed, it seems simpler to horizontally interpolate each
subpixel scanline as its endpoint vectors are computed, rather than storing them in an
array and then using them later. The reason we compute all the endpoint rows before
scanning them is because we need all eight of them to determine which fragments in
the row are fully covered. Since six of the eight subpixel scanlines will skip over these
fragments, we cannot scan them until we know the range of fully covered fragments in

the row.

subpixel
scanlines

4 Immm”ammm [[T T T T T T TTTTTT T TTTTTT]
/. AT T ==IIIIIIIIIIIIIIIIIII=

[l Fully covered fragments
[Full subpixel rows
[[] Partial subpixel rows

Figure A.2: Close-up of a fragment row.

Figure A.2 shows the three types of fragment rows our algorithm may encounter:
partially covered rows, fully covered rows belonging to partially covered fragments, and
(fully covered) rows belonging to fully covered fragments. Each type is rasterized in a
specific way that best capitalizes on the coherence of its coverage. Before we look at the
specific cases, we complete our general discussion of horizontal rasterization.

At each subpixel scanline, the x-components of the endpoint vectors are used to

126 APPENDIX A. DETAILS ON THE POLYGON RENDERER

locate which fragment and subpixel within that fragment begins and ends the scanline.?
These values will be used in constructing the coverage masks of the fragments, as well as

determining the range of fully covered fragments in the row, if there are any.

The colour, opacity, kg, and k, values associated with each fragment in the row are
calculated as a weighted average of the respective interpolated values at each subpixel
in the coverage mask. As will be shown below, we compute these quantities without
actually sampling each subpixel by recognizing that for convex polygons the subpixels
must always be covered in contiguous rows and columns. While the normal components
could also be averaged over the fragment, they are not; their raw interpolated values are

directly used by the shading model, as was explained in §4.3.6

The z- and z- values of the left endpoint vector and the plane equation of the poly-
gon are used to derive the minimum and maximum z-values for each subpixel row of the
leftmost pixel. These extrema are computed for subsequent fragments along the subpixel
scanlines by adding the constant horizontal z-increment, based on the appropriate plane
equation. Because the z-values are sampled at the vertical middle of a subpixel scanline,
they do not yield exact extrema (which occur at subpixel corners). This sampling error,
while significant with respect to the subpixel, is very small relative to the full fragment,
since any sample within the closest and farthest subpixels is still a good approxima-
tion for Zu;, and Zg.,. Moreover, the formula that uses these values is something of an

approximation itself (see §B.2.7), so the small inaccuracy is of no consequence.

Partially covered rows are the worst-case scenario for our scan-conversion algorithm,
requiring two samples per subpixel row. The bitmap for the subpixel row is produced
using the formula (28~'¢/t —1) xor (277"%9h* — 1), where left and right denote the integer
endpoints in subpixel coordinates. This value is then left-shifted by the appropriate
number of bits to place it in the correct row within the coverage mask, leaving the
others filled with zeros. The result is ored with the coverage mask under construction,
effectively inserting the new row into the final mask. The colour and opacity values are

found by sampling at the horizontal and vertical middle of the row, the former given

2This involves dividing by the horizontal subpixel resolution and obtaining the remainder. Since the
resolution is a power of two, the remainder can be quickly computed using a logical and operation.

A.1. RASTERIZATION ALGORITHM 127

by the expression w, and the latter taking a value of 0.5,1.5,...,7.5 in subpixel
coordinates. This yields an accurate subpixel-area-weighted average, unlike with the
faster method that samples a partially covered pixel only once, such as the one in [Car84].
Finally, the z-values at the endpoints of the row are compared with the with z-extrema
of the other rows in the fragment, as candidates for Zy;, and Zg.,. This routine is further
optimized for the special cases where right = 7 or le ft = 0, corresponding to the leftmost
and rightmost fragments in a multipixel row.

Any rows that are fully covered but belong to a partially covered fragment can be
handled more expeditiously. There are eight possible coverage masks having exactly
one full row of subpixels, and their numeric representations are obtained by shifting the
integer 2 — 1 by 0,8,16,...,56 bits to the left. Depending on the row in question,
the appropriate value is ored with the coverage mask under construction. The colour,
opacity, and reflectance values are sampled at the horizontal and vertical centre of the
row, multiplied by a weighting factor of 8, and added to the fragment’s opacity and
colour fields. Once all the subpixel scanlines within the pixel row have been traversed,
the values in these fields for each fragment are divided by its subpixel count to obtain
the respective average values. The Z;, and Z., are determined by sampling the first and
last subpixels in the row. Once these values are computed for the leftmost fragment, they
are incremented by 8 times their respective subpixel increments, effectively scanning the
subsequent fragments one at a time. This continues until either a block of fully covered
fragments is reached or a partially covered row marks the end of the subpixel scanline. In
the former case, the block of fully covered fragments is either skipped, by incrementing
the interpolant accordingly, or it continues, depending on which subpixel scanline it is.

The rasterization of fully covered fragments is the most highly optimized. The entire
coverage mask can be generated in a single step by assigning the value of 2* —1 (or, using
two’s complement, -1) to a 64-bit integer variable that stores the bitmap. A single sample
positioned near the centre of the coverage mask grid® yields a very close approximation

to the average value for the colour, opacity, and reflectance values of the fragment. For

3The subpixel position is (4,3.5). The vertical component is slightly off-centre because the samples
occur along the fourth subpixel row, and each subpixel row is sampled at its vertical centre. The error
of half a subpixel is negligible relative to 8 subpixel height of the fragment.

128 APPENDIX A. DETAILS ON THE POLYGON RENDERER

the Zpi, and Z,., values, we first determine the z-value of the top corner subpixel where
either Zy;, or Zg., occurs, and then apply an offset to it, based on the polygon’s plane
equation, to obtain the other extremum. Once we have the z-extrema of the leftmost
fully covered fragment, we apply fixed horizontal increments to them to obtain their
values for subsequent fragments to the right. Finding these offsets and matching the top
corner to an extremum are easily accomplished by using the appropriate plane equation
of the polygon. Because the z-samples are taken along the top of the fragment row, the
interpolation occurs only on the first scanline. So to summarize, the Zg;, and Zg, are
interpolated along the first scanline, and the other interpolated components along the
fourth. All the other scanlines are skipped over. As usual, the normal component is an
exception. Its interpolation is discussed in the following section.

No perspective correction is applied to the non-positional interpolated quantities,
since the primary target of our rendering engine—the paintstroke polygon—exhibits only
minor perspective effects at its intended scale, so the additional per-pixel division that

is required would have little benefit to counterbalance its cost.

A.2 Determining the Sampling Rate of the Shading
Model

The sampling grid used at each pixel is based on the required horizontal and vertical
sampling rates, which are independently computed once per polygon. Fully covered
fragments are sampled exactly according to this grid. But for partially covered fragments,
the grid’s horizontal and vertical densities are increased, if necessary, to ensure that at
least one sample per (horizontal and vertical) dimension occurs. For example, a fragment
with only one subpixel of coverage will always be sampled at the maximum sampling rate,
ensuring that the one sample is taken. For an arbitrary partially covered fragment, we
determine the horizontal and vertical span of its contiguous subpixel coverage (these are
computed while the coverage masks are being built), and set the sampling rates for that
fragment to the lowest values such that the horizontal and vertical distances between
sample points do not exceed the horizontal and vertical coverage spans. This prevents

the coverage mask from “falling through the cracks” of the sampling grid.

A.2. DETERMINING THE SAMPLING RATE OF THE SHADING MODEL 129

Once the horizontal and vertical unit increments of the normals have been computed
from the polygon’s plane equations, the next step is to find the maximum rate of angular
normal variation in the horizontal and vertical directions. These values are dependent
on the amount of curvature the polygon interpolates, based on the normal values at
its vertices. To obtain the values, we first need the shortest length attained by the
interpolated normal over the entire polygon. That length, along with the lengths of the
unit increments, will provide a measure of the maximum angular change per horizontal or
vertical step. The shortest length, which we denote by the scalar N,,;,, can be calculated
given the magnitude of the maximum range of normals over the polygon, R. We compute
R as the maximum norm of the differences in normals between any pair of vertices ¢ and
J:

R = max [N; = Nj| (A1)

When the value of R is found, it is easy to obtain N,,;, using the equation below,
as illustrated in Figure A.3. But before we do this, we check to see if the value of R is
extremely small. If it is, we consider the polygon “flat” and simply set the horizontal and
the vertical sampling rates to once per pixel (the lowest rate), and skip the remaining
tests.

Ny = e (A.2)
1—(R/2)?
Finally, the sines of the angular steps 6, and #,, corresponding to one subpixel of

horizontal or vertical normal variation (AN, or AN,) are given by

sinf, = AN, (A.3)
§inf, — AN, (A1)
VAN + N2,

The horizontal and vertical sampling rates s, and s, are then chosen, each bearing a
value of 1, 2, 4, or 8 samples per pixel. The value for s, is the lowest of these that keeps
% sin 6, below a user-specified threshold tol;. The equivalent criterion is also applied
to s,. To improve performance, the formulas are squared and multiplied out so as to

eliminate the expensive square root and division operations.

130 APPENDIX A. DETAILS ON THE POLYGON RENDERER

AN, R2 >
—

= >

Figure A.3: 0, the greatest angular increment for the horizontal scanning direction. (6,
is analogous.)

Next, three tests are applied. If any component of the halfway vector lies outside
the corresponding component’s range of the polygon’s normals, the maximum absolute
difference between the two is used to adjust tols to favour a lower sampling rate. Similarly,
if the maximum value of k, over the entire polygon is low, that is used to relax the
threshold further. Lastly, a small value of e; (a constant over the polygon), relaxes the
threshold further still. The cumulative effect of the adjustments is captured through
multiplication: given adjustment factors a;, as, and a3, based on the three tests, the

original threshold value tol, is re-assigned as follows:

tol, := ayaqas tol (A.5)

Appendix B

Blending the A-Buffer Fragments

In this chapter we present the pseudocode structure of the BlendFragment function, and

derive the blending formulas it uses.

B.1 The BlendFragment Function

The BlendFragment function takes four parameters: the top fragment top, the search
mask smask, and the blended colour and alpha values Chyeng and apreng. Whereas the

first two parameters contain input, the last two are used to store the output.

BlendFragment(Fragment: top, Mask: smask, var Colour: Cjeng, var Alpha: ablend)
M;, = smask N topgpask
A :=BitCount (t0pgasy) /64
Qplend *= tOPopacity * Ain

1f {Opuexy = nil then
This is the last fragment in the list. We return its colour
and coverage.

Cblend = topcolour

return
end if
My = smask N —10Pgask
under := tOppext

Minter := Mip N underpagk

131

132 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

if tOpzmax > undergyi, and Mo, 7 0 then
The top two fragments intersect. We blend them using
Blending Formula 4(b) [see §B.2.8].

k . Undeerax _topZm:'m
" tOpPzmax —tOPzZnin +UNAETznax —UNAET Z0in

Qtop = Oplend
Aynder :=BitCount(undery,sy) /64
ynder +— underopacity : Aunder

Qplend = Clop + Qunder (]- - topopacity)

topcolour " [atop —_ (1 _k) ‘Qynder 'topopacity}"‘undercolour ‘Qynder” (1 _k'topopacity)
Aplend

if underpers #nil and A;, > 0 and apeng < A;p then
We now blend the (blended) intersecting fragments with
all the fragments underneath them, using Blending For-
mula 4(a) [see §B.2.8].

Cblend =

BlendFragment(underexs, Min, Cunders QCunder)
Uinter = blend

Cinter = Cblend

Ointer = ablend/Ain

Qplend “= ipter + (]- - Ointer) * Qynder

Cinter Qinter +Cunder '(17075711567“)'aundeT
Aplend

Chiend =
end if
if Mout # @ then
Lastly, we blend the above result with the surrounding

region within the search mask. We use Blending Formula
2 [see §B.2.6].

BlendFragment (t0pnext, Mouts Cout, Cout)
Qip = Oplend
Cin = Chiend

Qplend = Qlin + Qloyt

Qin-Cin+aout-Cout
Qplend

Chiend =

end if

else if f0pepacity < 1 then

B.1. THE BlendFragment FUNCTION 133

Top fragment is transparent and does not intersect the
next one. We apply Blending Formula 4(a) [see §B.2.8].

BlendFragment(under, M, , Cynder, Cunder)
Qtop ‘= Oplend

Qplend = Cltop + (]- - topopacity) * Qynder

topcolour 'atop+cunder . (1 —10Popacity) ‘Qynder
Aplend

Chiend =

if M,y # 0 then
We blend the above result with the surrounding region
within the search, using Blending Formula 2 [see §B.2.6].

BlendFragment(under, Moy, Cout, Qout)
Uip = Oplend

Cin = Chiend

Qblend = Qlin + Qloyt

Chlend = ain.cﬁ:}j‘::t'cout

end if

else

Top fragment is opaque and does not intersect the next
one. (This is the most common case.) We apply Blending
Formula 2 [see §B.2.6] to blend it with the surrounding
region within the search mask.

if M, =0 then
Cblend = tOpcolour
else
BlendFragment(under, Moy, Cout, Qout)
Qjp, = Qlplend
Qplend ‘= Qlin + Qout

Cbl d:= Qin t0Pcolour +out Cout
end Qplend

end if
end if

end

Before proceeding to the blending formulas, we present a few implementation details

134 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

which aid in understanding the overall algorithm. The set operators N and U, which are
used to combine coverage masks, are implemented using bitwise and and or operators,
respectively. The speed at which these operations can be performed in large measure
accounts for the A-Buffer’s efficiency. The BitCount () function counts the number of
one bits in a coverage mask, stripping off eight bits at a time and using their numeric
representation as an index into a table of precomputed bit counts. The formulas involving
colour are essentially vector equations; the three colour components can be treated as

independent scalars.

B.2 The Blending Formulas

We begin by introducing some basic definitions and axioms, which will serve as a foun-

dation for the derivations that lie ahead.

B.2.1 Basic Definitions

Let a be an arbitrary fragment. The following definitions of a’s attributes are device-
independent analogues of the fields described in section 4.2. We have shortened their

names in order to keep our equations at a reasonable length.

Def’n I M, is the coverage mask of a, represented as a function that maps a point from the
unit square to a value of zero or one. Because it is convenient to use set notation
when dealing with M,, we define some useful set operators in terms of arbitrary

fragments a and b:

(a) M, : (z,y) —> m, where (z,y) € R* and m € Z, such that 0 < z,y,m < 1
(b)
1 My(z,y)=1 or Myz,y)=1

(Ma U Mb)(xa y) =
0 otherwise

1 M,(x,y) =1 and My(z,y)=1
(Mo 1 M) (z,y) =

0 otherwise

B.2.

Def’n II

Def’n III

Def’n IV

Def’'n V

Def’n VI

Def’n VII

Def’n VIII

Def’n IX

Def’n X

THE BLENDING FORMULAS 135

(d) M, =0 ifand onlyif M,(z,y)=0,Vz,y

A, is the area of the fragment a’s coverage mask. It is a real number obtained by

integrating M, over the unit square.
1l
Aa - fO fO Ma(‘r7 y)dy d'r

C, is the colour of a, represented as an arbitrary vector.

0, 1is the opacity of a. It is a real number in the range [0, 1], where a value of zero

represents complete transparency and a value of one complete opacity.

o is the coverage of a. It is defined as area times opacity, and represents the degree

to which the colour of a influences the final blended colour of the pixel.

Qq = Aaoa

Zmin, and Zmazx, are the respective minimum and maximum z-values attained
by a, expressed as real numbers. We assume that the positive z-axis points away

from the viewer.

a @ b is a virtual fragment derived from blending a with an arbitrary fragment b.

The properties of a & b are defined by the axioms below.

b is said to be behind a iff Zmin, < Zmin,. Note that this definition allows for a

and b to intersect, as described in the following definition.

If b is behind a and Zmax, > Zmin, and M, N M, # (), then a and b are said to

intersect.!

a and b are said to be disjoint iff M,NM, = (). Otherwise, they are considered over-
lapping. In the latter case, if M, = M,, they are fully overlapping, and otherwise,
partially overlapping.

!Note that this meaning of intersection does not imply a geometric intersection between the polygons
from which fragments a and b are derived, although it is intended to model this.

136 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

B.2.2 Axioms

The following three axioms provide a fundamental set of rules for blending the coverage
masks, opacities, and colours of two arbitrary fragments ¢ and b. Note that the final
axiom describes how the colours may be blended, without giving an explicit formula. As
we shall see, different relations between a and b call for different colour blending formulas;

however, they all must abide by this axiom.
Axiom I Ma@b = Ma U M(,

Axiom IT (a) 04y = ‘Ll"AOZTJ”:zO” for M, N M, =0

(b) 0aqp = 04 + 0p(1 — 0,) for M, = M, and Zmaz, < Zmin,
Axiom III Cysp = %, such that
(a) s+t = ump

(b) sxa, if M,NM,=0 or M, =M,

(C)tO(CY(, if MaﬁMb:Q)OI'Ma:M(,

B.2.3 Useful Derivations

The following derivations are based on the above definitions and axioms. They will be

used in the recursive blending formulas described in the following section.

1. First, we establish that the blended area of a pair of disjoint fragments is the sum of
their individual areas. We do this by considering Definitions I and II, and applying

Axiom I.

For M, N M, =0,
Aggp = Ma@b(xay)dy dx (B-l)

[M, + My — (M, N M,)] (z,y)dy dz (B.3)

[f
- / / (M, U M), y)dy da (B.2)
I/

B.2. THE BLENDING FORMULAS 137

1l 1ol

= //Ma(x,y)dydx+/ / My(z,y) dy dx (B.4)
o Jo o Jo

= A, + A4 (B.5)

2. We now use the above derivation along with Axiom II(a) to determine the blended

coverage for a pair of fragments with disjoint coverage masks:

For M, N M, =0,

Qapp — Aa@boaeab (B6)
Aa0a+Ab0b
= Agpp——-"T— B.
abb Aa"‘Ab (7)
Aa0a+Ab0b
= (A, + A2 0 B.8
(At) =7 (B.)
= AaOa + AbOb (Bg)
= Qg+ Qyp (BIO)

3. Finally, we apply Axiom II(b) to derive the blended coverage for a pair of non-

intersecting fragments with identical coverage masks:

For M, = M, and Zmazx, < Zminy,

Qagh = AaebOamb (B.11)
= Auab [0a + 0p(1 — 0,)] (B.12)
= Aupb0s + Aaapor(l — 04) (B.13)
= Au04 + Apop(1 — 04) (B.14)
= g+ ay(l —o,) (B.15)

138 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

B.2.4 Recursive Blending Formulas

We now have the necessary tools to derive the recursive blending formulas used in
BlendFragment. We begin by introducing the recursive blending operator, =, which
is our notational equivalent of the BlendFragment function. Given an arbitrary frag-
ment a, the expression a denotes a virtual fragment computed by recursively blending a

with all the fragments behind it. Our goal is to compute M;, oz, and Cj.
Base Case If a is the only fragment to be blended, then @ is trivially equal to a.

Recursive Case If there are two or more fragments to be blended, we label them a,
b, ¢, ..., such that Zmin, < Zminy, < Zmin, < Except for the case where a and b

intersect, a is equivalent to a & b. The intersecting case will be handled separately.

B.2.5 Blending Formula 1: M;

The formula for the blended coverage mask is trivial, since Axiom I applies to all frag-

ments:

M; = M, (B.16)
= M,UM; (B.17)

B.2.6 Blending Formula 2: «o; and C; when M, N M; =0

In order to apply these formulas, one must ensure that the coverage masks of a and b
are disjoint. The BlendFragment function does this without explicitly computing Mj, by
restricting the blending of b to the region outside of M,, using the search mask.

The formulas follow directly from Derivation II and Axiom III.

For M, N M; =10,

MG = (B.18)
Ci = O (B.20)

B.2. THE BLENDING FORMULAS 139

Figure B.3: Fragment arrangement suitable for Blending Formula 3(b).

= Cata + Ch05 (B.21)
Qg .

B.2.7 Blending Formula 3: o and C; when M, = M

There are two possibilities here: the two foremost fragments, a and b, may intersect
(in the sense of Definition IX) or not, depending on their respective coverage masks
and Zmin and Zmax values. If ¢ and b do intersect, we add the further restriction
that M, = M;j, which can be satisfied by clipping all fragments behind b to M,. This

restriction significantly simplifies the formulas.

140 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

Blending Formula 3(a): Non-Intersecting Top Fragments (), = M; and Zmazx, <
Zminy)

These formulas follow trivially from Derivation III and Axiom III.

For M, = M; and Zmaz, < Zminy,

Mg = Qg (B.22)
= o, +a3(l —o0,) (B.23)
Ca = Cu (B.24)
_ Guaa + Cj05(1 — 0,) (B.25)

Qg

Blending Formula 3(b): Intersecting Top Fragments (A, = M; = M, and
Zmax, > Zminy)

Dealing with intersecting fragments requires using a front visibility factor, denoted by
ke (0,1). This factor estimates the proportion of fragment a that is not obscured by
fragment b. The portion of b not obscured by a is then weighted 1 — k. If each frag-
ment contained a plane equation representing the orientation of its originating polygon,
it would be possible (though expensive) to compute an ezact visibility factor for a pair of
intersecting fragments by determining the line or plane of geometric intersection. How-
ever, the only geometric information stored in a fragment is the coverage mask and the
z-value extremes. This is not enough to determine the true visibility factor, so we use

Carpenter’s approximation [Car84].

i Zmaxy — Zmin,

= B.26
Zmax, — Zming + Zmaxy, — Zminy ()

The geometric interpretation for this formula is shown in Figure B.4(a). It is important
to remember that this is only an approximation and although it works well most of the
time, it may produce inaccurate results, as illustrated in Figure B.4(b). As the figure
shows, overlap in the coverage masks and z-extrema of two fragments does not even
guarantee a true geometric intersection, much less specify the exact visibility of each

one.

B.2. THE BLENDING FORMULAS 141

Zmin, Zmax, Zmin, Zmax,
b
X > K
<D ° J ==)
Zmin, Zmax, Zmin, Zmax,
(a) Good approximation (b) Poor approximation

Figure B.4: Geometric interpretation of k for intersecting fragments a and b.

The challenge in computing @ when the top two fragments intersect is that we cannot
simply decompose it into a & b, as we have done in the other cases. To explain why, we
refer to Figure B.5. Note that portion b; of fragment b should be blended with portion
ay of fragment a, as well as the fragments behind b. The algorithm presented in [Car84]
overlooks this, simply blending the front fragment with the combined result of the ones
behind it. The problems of this are most evident in the following situation. Consider
a transparent polygon intersecting an opaque one. Along the edge of intersection, the

pixels will contain colour from items behind the opaque polygon, clearly an impossibility.

Figure B.5: Regions of Intersection.

Our solution to the problem is simple: we blend the two intersecting fragments at the
top separately, and then blend that with the blended result of the rest of the fragments.
This approach yields @ = (a @ b) & ¢, where ¢ is the fragment following b. This eliminates
the above anomaly by preserving the opacity of an intersection of a transparent fragment
with an opaque one, thereby preventing colour contamination from subsequent fragments.

Since our algorithm assumes that intersections involve exactly two fragments, the blend-

142 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

ing of a & b with ¢ does not involve any further intersections, and is thus amenable to
Blending Formula 3(a).?

In order to blend the intersecting fragments a and b, we treat them as two disjoint
pairs of overlapping fragments: portions aq, by and by, ay in Figure B.5. The first pair has
a in front followed by b, and has area kA, (since A, = A, by our assumption of identical

coverage masks). The second has b in front and a behind, with area (1 — k)A,.

For M, = M, and Zmax, > Zmin,

gy = kg + (1 —o04)w] + (1 —k)[ap + (1 — op)]
= klag+ (1 —0q)a| + g + apy — aqop — k [ap + g — 0]
= klog + ap — Apoyos] + g + ap — Ag0,05 — k [+ g — 0]
= klog + ap — Agop0s] + g + ay — Apog0p — k[+ g — q0p)]
= klog+ ap — aq0p] + g + ap — 40, — k [y + g — q0p)

= a,+ a(l —o0,)

Unsurprisingly, the value k£ disappears from the formula; the blending order of fragments
is irrelevant to the coverage. That is why splitting a and b at the intersection (where
their order reverses) and merging the results yields the same coverage as ignoring the
intersection and blending the entire fragments using Derivation 3.

To determine the colour of a @b, we proceed in the same fashion. As one may expect,

the k factor is retained in this formula, since blending order does affect colour.

For M, = M, and Zmazx, > Zmin,

1— 1- 1-
oy =k [€aCa + (1 — 04)aCy] + (1 — k) [4,Ch + (1 — 0p) e C (B.33)
Qapb
_ Cata[1 = (1 = k)oy] + Cyan(1 — ko) (B.34)
Camb

2 Although there can be multiple intersections within a chain of fragments attached to a given pixel, a
single intersection (in the sense of Definition IX) involving more than two fragments is undefined. If three
or more surfaces do intersect at a single point, our formula will only capture the foremost intersection,
treating the rest of the fragments as overlapping but not intersecting the front two. In practice, this
rarely causes any discernible colour distortion.

B.2. THE BLENDING FORMULAS 143

For this formula, unlike with the others we have presented so far, it is not obvious that

parts (a), (b), and (c) of Axiom III are satisfied, so we must verify that they are.

s = ag[l—(1—Fk)op) (B.35)
t = op(l— ko) (B.36)

s+t = a,[1—(1=k)opy + ap(l — ko) (B.37)
= g+ o+ (1 — k)a,op + kago, (B.38)
= g+ o+ (1 = k)Au0,05 + koo, (B.39)
= g+ ap+ (1 — k)Apo,0p + ko, (B.40)
= g+ o+ (1 — k)apo, + kayo, (B.41)
= g+ (1l —04) (B.42)
= Quab (B.43)

Since [1 — (1 — k)op] > 0 and is not a function of ag, s x «,. Similarly, since 1 — ko, > 0

and is independent of «ay, t o< .

B.2.8 Blending Formula 4: o5 and C; when M; C M,

In this final set of formulas, we ease the requirement that the coverage masks of a and b
be identical, and allow the rear mask to be a subset of the front mask. Our motivation is
to provide a single blending formula that handles this common case, rather than forcing
the BlendFragment function to subdivide the fragments, apply Blending Formula 3 to
the subfragments, and then merge the results. Again, we consider intersecting and non-
intersecting fragments as separate cases. As with Formula 3, we assume that M; = M, in
the case of intersecting fragments. The BlendFragment function satisfies this assumption
by clipping all the fragments beyond b to M,.

At this point we introduce some new syntax. Given fragments a and b, such that
Zming < Zmin, and M, C M,, let a denote fragment a clipped to the mask M,, and let
a denote the fragment a clipped to the mask M, — M. Hence, M; = M, and MzNM, = 0.

Of course, 0; = 0; = 0, and Cy = C; = C,,.

144 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

: b

Figure B.7: Fragment arrangement suitable for Blending Formula 4(b).

Blending Formula 4(a): Non-Intersecting Top Fragments ()/; C M, and Zmaz, <
Zminy)

Applying Derivation II, and then III, we reason as follows:

For M; C M, and Zmax, < Zminy,

G = Qs (B.44)
= az+o3(l —0z) + g (B.45)
= Ajo,+ 05(1 —0,) + (Ay — 4j)04 (B.46)
= a3(1 —o0,) + Aso, (B.47)
= g+ aj(l —o0,) (B.48)
Ca = Clasiyaa (B.49)
_ Cowi [a + (1 — 04)] + Caa, (B.50)
Qg
_ Cene il g + az(1 - 0q)] + Cag (B.51)

g

B.2. THE BLENDING FORMULAS 145

C@Oé@ + Cgag(l — 0@) + C@Oéa

= — (B.52)
. CaAi,Oa + C,;Oé;)(l — Oa) —+ Ca(Aa — A,;)oa (B 53)
Qg)
_ CyAu0, + 05045(1 — 04) (B.54)
Qg
_ Caog + Cy05(1 — 0,) (B.55)

Qg

Interestingly, although Formula 4(a) applies to a more general blending scenario
(M; € M,) than Formula 3(a) (M; = M,), their coverage and colour equations turn
out to be identical. Equally interesting is the fact that if we consider the case where

M, C M, the colour equation becomes different from the other two cases, namely
C& _ Caaa—I—Cg(ag—adol;)'

Qg

We have no occasion to use this equation in BlendFragment,

so we omit a derivation for it.

Blending Blending Formula 4(b): Intersecting Top Fragments(M, C M, and
Zmazx, > Zminy)

As in Formula 3(a), the coverage and colour of @ are obtained by blending (a®b)&é. We
compute a @ b with the formulas below, and then blend that result with ¢ using Formula

4(a). Again, we assume intersections involve only two fragments, and M; = M,.

For M; = M, C M, and Zmax, > Zminy,

Qo = Q(apb)da
= az+ap(l —0;) +ag

= A(,Oa + Oéb(l — Oa) + (Aa - Ab)Oa

= a,+ a(l —o0,)

Cusv = Clasbyea
Caap [aa + (1 — 03)] + Caag
Aapb

Chaq[1—(1=k)op]+Chap(1—Fkog
_ : (aa+()xbb(]1—02)b(Mg + (1 = 0a)] + Caag (B.63)
Uagpb

(B.56)
(B.57)
(B.58)
= (1 — 04) + Ag0q (B.59)
(B.60)
(B.61)
(B.62)

146 APPENDIX B. BLENDING THE A-BUFFER FRAGMENTS

CaAbOa [1 - (1 — k)Ob] + C(,a(,(l — kOa) + CaOG(Aa — Ab)

_ (B.64)
Qagpb
_ —Coy04(1 — k) + Charg + Cpayp(1 — koy,) (B.65)
aab .
_ Colag — (1 = k)apo,] + Cpayp(1 — koy) (B.66)
aab

Finally, we verify Axiom III(a) for the color formula. Note that parts (b) and (c) do

not apply, since M, and M, are neither disjoint nor identical.?

s = ag— (1 —k)ayo,

t = ap(l—ko,)

s+t = a,— (1 —k)apo, + ap(1 — kog)
= g+ kayo, (1 — 1) + ap(1 — 0,)

= ag+op(l—o0,)

3If we were to apply Axiom III(b) and III(c) nevertheless, we would see that the former does not
hold. This is because part of fragment b that lies in front of a (due to the intersection) causes a’s colour
contribution over that region to be constant with respect to A,—since M, C M,, the contribution is
just a function of &k, Ay, and o,. Hence, a’s total colour contribution s, as a function of A,, is linear but
contains a constant arising from the above region: s = ¢; A, + ¢o. This explains why the expression for
s in line B.67 has two terms that differ by a factor of A, and why we therefore cannot say that s « -

Bibliography

[AES94]

[Bea91]

[BligY)]

[Blo85]

[BW86]

[Car84|

[CPD*96]

S. S. Abi-Ezzi and S. Subramaniam. Fast dynamic tessellation of trimmed
NURBS surfaces. In Computer Graphics Forum, volume 13, pages 107-126.
Eurographics, Basil Blackwell Ltd, 1994.

Robert C. Beach. An Introduction to the Curves and Surfaces of Computer-
Aided Design. Van Nostrand Reinhold, New York, 1991.

James F. Blinn. Jim Blinn’s corner: Optimal tubes. IEEE Computer Graphics
and Applications, September 1989.

Jules Bloomenthal. Modeling the mighty maple. In Computer Graphics (SIG-
GRAPH ’85 Proceedings), volume 19, pages 305-311. ACM SIGGRAPH, Ad-
dison Wesley, July 1985.

Gary Bishop and David M. Weimer. Fast Phong shading. In Computer
Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 103-106. ACM
SIGGRAPH, Addison Wesley, August 1986.

Loren Carpenter. The A-buffer, an antialiased hidden surface method. In
Computer Graphics (SIGGRAPH 8} Proceedings), volume 18, pages 103-
108. ACM SIGGRAPH, Addison Wesley, July 1984.

Andrew Certain, Jovan Popovi¢, Tony DeRose, Tom Duchamp, David H.
Salesin, and Werner Stuetzle. Interactive multiresolution surface viewing.
In Computer Graphics (SIGGRAPH 96 Proceedings), pages 91-98. ACM
SIGGRAPH, Addison Wesley, August 1996.

147

148

BIBLIOGRAPHY

[CVM*96] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans We-

[Far83]

[FFR83]

[Fou92]

[FV83]

[HBY4]

[HGY4]

[HGO7]

[Hop96]

[Hop97]

ber, Pankaj Agarwal, Frederick P. Brooks, Jr., and William Wright. Simplifi-
cation envelopes. In SIGGRAPH 96 Conference Proceedings, pages 119-128.
ACM SIGGRAPH, Addison Wesley, August 1996.

Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design.

Academic Press, Toronto, 1988.

E. Fiume, A. Fournier, and L. Rudolph. A parallel scan conversion algorithm
with anti-aliasing for a general purpose ultracomputer. In Computer Graphics
(SIGGRAPH 83 Proceedings), volume 17, pages 141-150. ACM SIGGRAPH,
Addison Wesley, July 1983.

Alain Fournier. Normal distribution functions and multiple surfaces. In
Graphics Interface 92 Workshop on Local Illumination, pages 45-52, May
1992.

James D. Foley and Andries Van Dam. Fundamentals of Interactive Computer

Graphics. Addison—Wesley, Don Mills, Ontario, 1983.

Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice Hall,
Englewood Cliffs, NJ, second edition, 1994.

Paul Heckbert and Michael Garland. Multiresolution modeling for fast ren-
dering. In Proceedings of Graphics Interface ’94, pages 43-50, Banff, Alberta,

Canada, May 1994. Canadian Information Processing Society.

Paul Heckbert and Michael Garland. Survey of polygonal surface simplifica-
tion algorithms. Technical report, Carnegie Mellon University, 1997.

Hugues Hoppe. Progressive meshes. In SIGGRAPH 96 Conference Proceed-
ings, pages 99-108. ACM SIGGRAPH, Addison Wesley, August 1996.

Hugues Hoppe. View-dependent refinement of progressive meshes. In SIG-
GRAPH 97 Conference Proceedings, pages 189-198. ACM SIGGRAPH, Ad-
dison Wesley, August 1997.

BIBLIOGRAPHY 149

[KB8Y]

[KK89]

[LE97]

[LTT91]

[Max90]

[Mil88]

[NDW93]

[Ney95al

[Ney95b]

[RBS5)]

A. A. M. Kuijk and E. H. Blake. Faster phong shading via angular interpo-
lation. Computer Graphics Forum, 8(4):315-324, December 1989.

James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional
textures. In Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23,
pages 271-280. ACM SIGGRAPH, Addison Wesley, July 1989.

David Luebke and Carl Erikson. View-dependent simplification of arbitrary
polygonal environments. In SIGGRAPH 97 Conference Proceedings, pages
199-208. ACM SIGGRAPH, Addison Wesley, August 1997.

Andre M. LeBlanc, Russell Turner, and Daniel Thalmann. Rendering hair
using pixel blending and shadow buffers. The Journal of Visualization and

Computer Animation, 2:92-97, 1991.

Nelson L. Max. Cone-spheres. In Computer Graphics (SIGGRAPH 90 Pro-
ceedings), volume 24, pages 59-62. ACM SIGGRAPH, Addison Wesley, Au-
gust 1990.

Gavin S. P. Miller. From wire-frames to furry animals. In Proceedings of

Graphics Interface '88, pages 138-145, June 1988.

Jackie Neider, Tom Dayvis, and Mason Woo. OpenGL Programming Guide.
Addison—Wesley Publishing Company, Don Mills, Ontario, 1993.

Fabrice Neyret. Animated texels. In Computer Animation and Simulation

'95, pages 97-103. Eurographics, Springer-Verlag, September 1995.

Fabrice Neyret. A general multiscale model for volumetric textrues. In Pro-

ceedings of Graphics Interface "95, pages 83-91, 1995.

William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. In Computer Graph-
ics (SIGGRAPH 85 Proceedings), volume 19(3), pages 313-322. ACM SIG-
GRAPH, Addison Wesley, July 1985.

150

[RCIOL]

[Ree83]

[RSCS7]

[SC88]

[Si190]

[SLS*96]

3593]

BIBLIOGRAPHY

Robert E. Rosenblum, Wayne E. Carlson, and Edwin Tripp III. Simulating
the structure and dynamics of human hair: Modelling, rendering and ani-
mation. The Journal of Visualization and Computer Animation, 2:141-148,

1991.

W. T. Reeves. Particle systems — a technique for modeling a class of fuzzy

objects. ACM Trans. Graphics, 2:91-108, April 1983.

William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering an-
tialiased shadows with depth maps. In Computer Graphics (SIGGRAPH 87
Proceedings), volume 21, pages 283-291. ACM SIGGRAPH, Addison Wesley,
July 1987.

Michael Shantz and Sheue-Ling Chang. Rendering trimmed NURBS with
adaptive forward differencing. In Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), volume 22, pages 189-198. ACM SIGGRAPH, Addison Wesley,
August 1988.

M. J. Silbermann. High-speed implementation of nonuniform rational B-
splines. In Curves and Surfaces in Computer Vision and Graphics, pages
338-345. The International Society for Optical Engineering, The International
Society for Optical Engineering, August 1990.

Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John
Snyder. Hierarchical image caching for accelerated walkthroughs of complex
environments. In SIGGRAPH 96 Conference Proceedings, pages 75-82. ACM
SIGGRAPH, Addison Wesley, August 1996.

Andreas Schilling and Wolfgang Straflier. EXACT: Algorithm and hardware
architecture for an improved A-buffer. In Computer Graphics (SIGGRAPH
’93 Proceedings), volume 27, pages 85-92. ACM SIGGRAPH, Addison Wes-
ley, August 1993.

BIBLIOGRAPHY 151

[Whi83] T. Whitted. Anti-aliased line drawing using brush extrusion. Computer
Graphics (SIGGRAPH ’83 Proceedings), 17:151-156, July 1983.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In Computer
Graphics (SIGGRAPH 78 Proceedings), volume 12, pages 270-274. ACM
SIGGRAPH, Addison Wesley, August 1978.

[WP95] Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In
SIGGRAPH 95 Conference Proceedings, pages 119-128. ACM SIGGRAPH,
Addison Wesley, August 1995.

[WS92] Yasuhiko Watanabe and Yasuhito Suenaga. A trigonal prism-based method
for hair image generation. IEEE Computer Graphics and Applications,
12(1):47-53, January 1992.

